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ABSTRACT 

 
Dimming the backlight of a liquid crystal display (LCD) 
reduces the dynamic range and intensity of a displayed 
image and hence has a profound impact on the perceived 
image quality. To reflect the actual degradation of image 
quality perceived by human eye, we take visibility in 
addition to contrast into account and develop a visibility 
model for image quality assessment. The proposed visibility 
model also considers factors related to the display and the 
ambient light to accommodate the viewing condition. 
Experimental results are shown to demonstrate the 
performance of the proposed model. 
 

Index Terms—Image quality assessment, dim backlight 
 

1. INTRODUCTION 
 
Dimming the backlight of a liquid crystal display (LCD) 
saves the battery power of a portable multimedia device but 
considerably degrades the image quality largely due to the 
reduction of image intensity and dynamic range. An example 
of the image quality degradation is shown in Fig. 1, where 
the dark image regions become too dark to be visible to 
human eye when the image is illuminated with dimmed 
backlight.  

The decision of the backlight intensity can be 
considered a tradeoff between power saving and quality 
degradation. The amount of power saving can be computed 
by directly measuring the power usage of the display device; 
however, there is no obvious way for a computer to measure 
the difference in visual quality between images illuminated 
with different backlight intensities. Although a human 
observer can easily choose which image looks better, 
running an extensive subjective test  to quantify the amount 
of visual quality difference is labor intensive and impractical. 
Therefore, there is a need for a computational scheme to 
measure such quality difference. 

Many existing image quality assessment metrics, such 
as the high dynamic range visual difference predictor (HDR-
VDP) [1], its advanced version HDR-VDP-2 [2], the 
structure similarity index (SSIM) [3], the visual information 
fidelity metric (VIF) [4], and the visual signal to noise ratio 

 (VSNR) [5], are designed to quantify distortions introduced 
in the process of image compression, image processing, 
image capturing, or noisy communication. These metrics 
typically work under the presumption that the test image and 
the reference image have the same dynamic range. 
Neglecting this presumption and directly applying such 
metrics to images illuminated with different backlight 
intensities would lead to incorrect quality assessment. 

A number of quality assessment metrics are designed 
for images with different dynamic ranges. For instance, the 
dynamic range independent metric (DRIM) [6] evaluates the 
quality of an image based on its contrast loss due to the 
reduction of dynamic range and image intensity. But, being a 
perceptual attribute of an image, the contrast is a meaningful 
measurement only when the pixels under evaluation are 
visible. For invisible pixels such as those in Fig. 1 under dim 
backlight, the DRIM type of values become meaningless 
because the contrast of such pixels is not detectable by 
human eye.  

We believe visibility is an important attribute of image 
quality, especially for the dim backlight scenario described 
above. Therefore, in addition to contrast, we include pixel 
visibility as part of the factors of image quality assessment. 
Our goal is to measure the visibility difference of an image 
under two lighting conditions: full backlight and dimmed 
backlight. 

    
(a)                                                        (b) 

Fig. 1. Illustration of the effect of LCD backlight on perceptual image 
quality: (a) 100% backlight and (b) 10% backlight.  
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Given an image and a backlight intensity level, our 

proposed visibility model estimates the visibility of each 
image pixel and expresses it as a probability. The output of 
the model is a visibility map containing the probability of 
visibility of each pixel. The overall architecture of the model 
mimics the anatomy of the human visual system (HVS), 
including  optical pathway, retinal pathway, contrast 
sensitivity, and contrast masking of the HVS. The proposed 
model also considers the effects of the display model and the 
ambient light, which are important but often ignored in 
previous image quality assessment metrics.  

The remainder of the paper is organized as follows. We 
describe the psychological properties of HVS in Section 2 
and the proposed model in Section 3. The experimental 
setup is described in Section 4, and the experimental results 
are presented in Section 5. Finally, the conclusion is drawn 
in Section 6. 
 

2. CONTRAST SENSITIVITY AND CONTRAST 
MASKING 

 
Most of the research in vision science indicates that human 
visual perception varies according to the viewing condition. 
Specifically, image details are not detectable by HVS when 
their contrast is low. The contrast threshold of visual stimuli 
is found to depend on spatial frequency of the stimuli, which 
is known as contrast sensitivity function (CSF) [7], which 
was found to vary with the luminance levels [8]. Mantiuk et 
al. [2] systematically assessed the contrast sensitivity of 
different spatial frequencies in various luminance levels and 
constructed a model that covered more conditions than 
previous studies, and, is thus more suitable for the prediction 
of visibility. We used the CSF model they proposed to 
predict the visibility of each pixel of an image.  

Besides the research on sensitivity to visual stimuli with 
specific spatial frequencies, vision scientists also discovered 
a phenomenon named contrast masking [9], in which the 
visibility of a sine-wave grating signal is shown to be 
attenuated by a simultaneously presented grating mask with 
different spatial frequencies. When the frequencies of the 
target and the mask are similar [9], and the contrast of the 
mask is high [10], the maximum masking effect is reached. 
However, when the contrast of the mask is low, there is a 
facilitation effect on target detection known as the pedestal 
effect [11]. Foley [12] modified the model proposed by 
Legge et al. [10], capturing both the masking and the 
facilitation properties of visual system in detecting signals of 

different spatial frequencies, and at the same time 
considered the different facilitation effects in various mask 
sizes and selective facilitation effects in the same grating 
orientation. The model is supported by behavioral data and 
is consistent with physiology findings [13].  

In this work, in addition to the CSF model [2], we use 
Foley's contrast masking model [12] to identify pixels that 
are perceived differently from their surrounding pixels. 

 
3. VISIBILITY MODEL 

 
The architecture of the proposed visibility model is 

shown in Fig. 2. We first model the optical and retinal 
pathway of HVS, and then the contrast sensitivity and 
contrast masking properties of HVS. Finally, the 
probabilities of visibility of image pixels are computed 
through a psychometric function. Details of each component 
in the architecture are described in this section. 
 
3.1. Display model 
 
Although it is the displayed image that should be evaluated, 
in practice, however, the image available for quality 
assessment is the source image. Therefore, we estimate the 
luminance of the displayed image from the following display 
model [14]:   

( )d b m b aL L p L L Lγ= + − + ,                  (1) 

where Ld is the luminance value of the displayed image, Lb is 
the luminance of the black level of the display, Lm is the 
maximum luminance of the display, p is the normalized 
pixel value of the source image, � is the gamma parameter, 
and La is the ambient light reflected from the display panel. 
La is related to the ambient illuminance Ea (in lux) by 

          k
a aL E

π
= ,                                   (2) 

where k is the reflectivity of the display panel. Note that the 
values of all parameters are measured with respect to the 
actual display used. 
 
3.2. Optical and retinal pathway 
 
The model proposed by Mantiuk et al. [2] is adopted to 
model the characteristic of the optical and retinal pathway of 

 

Fig. 2. The architecture of the proposed model.  
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HVS. The architecture of this model mimics the anatomy of 
these pathways. Step by step, it models the disability glare 
effect [15], the expected fraction of light sensed by each 
type of photoreceptors (L-, M-cones and rods), and the 
luminance masking of these photoreceptors. The output of 
this model is a joint cone and rod achromatic response A, 
which is computed by: 

L M RA R R R= + + ,                                (3) 

where RL, RM, and RR, respectively, denote the responses of 
L-cones, M-cones, and rods. The equal weighting of RL and 
RM is motivated by the fact that L- and M- cones contribute 
approximately equally to the perception of luminance. 
Although a more accurate model should also consider 
inhibitive interactions between rods and cones, this model is 
a sufficient approximation for our purpose. 
 
3.3. Contrast sensitivity function and contrast masking 
 
We use CSF [2] along with the contrast masking model [12] 
to predict the visibility of each pixel in an image.  

Since the contrast sensitivity and the contrast masking 
mechanisms of HVS are selective to narrow ranges of spatial 
frequencies and orientations [16], we adopt the steerable 
pyramid [17] for image decomposition. Specifically, the 
input image is decomposed into four orientation bands and 
the maximum possible number of spatial frequency bands at 
the given image resolution. Let Bf,o denote the f-th spatial 
frequency band and o-th orientation of the steerable pyramid, 
the contrast Cf, o(x, y) of each pixel Bf, o(x, y) is obtained by 

, , ,( , ) ( , ) ( ( , ))f o f o f oC x y B x y A B x y= − ,               (4) 

where A is an operator that computes the mean of the 
neighboring pixels of Bf,o(x,y) in the 11×11 window centered 
at Bf,o(x,y) (See Fig. 3).  

The contrast sensitivity Tf, o for each spatial frequency 
and orientation band is computed as in [2]: 

2 2
, ( , , ) ( , , )f o A A

pT C f o L M f o L= + ,                (5) 

where C is the contrast sensitivity, M accounts for the 
masking effect, p is a tuning factor empirically determined to 
be 3.5 [2], and LA is the adapting luminance. Different from 
the original method [2] that uses the photopic luminance 
(RL+RM) of each pixel to approximate LA, we use the 
photopic luminance of the actually measured ambient 
illuminance level Ea to approximate LA.  

Considering the contrast sensitivity Tf,o, we compute  the 
normalized contrast  Nf, o(x, y) for each pixel as: 

,
,

,

( , )
( , ) f o

f o
f o

C x y
N x y

T
= .                       (6) 

 
3.4. Visibility metric  
 
We compute the probability of visibility for every pixel in 
the input image by combining the information from each 
frequency-orientation band. This process is the same as that 
described in HDR-VDP-2 [2]. Specifically, the normalized 
contrast values are first transformed to the corresponding 
probability values through a psychometric function: 

, ,( , ) 1 exp(log(0.5) ( , ))f o f oP x y N x y= − ,             (7)  

which is derived on the basis of the report from Daly [18]. 
After that, the probability values are summed across all 
bands and orientations to obtain the overall probability for 
all orientation and frequency-selective mechanisms of HVS. 
The summation is computed as: 

,
( , )

1 (1 )map f o
f o

P P= − −∏ .                          (8) 

 
 

4. EXPERIMENTAL SETUP 
 
Considering the display model calibration (see Section 3.1), 
we have to determine the values of �, Lm, and Lb, before 
applying (1) to compute the displayed pixel luminance. A 
ViewSonic VX912 display with backlight intensity ranging 
from 45.9 to 161.9 cd/m2 is used. We measure the luminance 
for each normalized pixel value by a luminance meter 
(LAIKO DT-101), and determine �, Lm, and Lb by linear 
regression under the uniform backlight assumption that 
every pixel in the display are the same. As shown in Fig. 4, 
the resulting �, Lm, and Lb are 2.25, 191.33 and 0.25, 
respectively.  

In our experiments, we use the proposed visibility 
model to estimate the visibility loss of image details due to 
the dim backlight of the LCD. The reference and target 
images are the same test image but illuminated with full 
backlight level and 10% backlight level respectively. The 
difference between the estimated probabilities of 
visibility

 

Fig. 3. Illustration of the contrast determination: The contrast of 
the central pixel in the cropped block shown on the right is the 
difference between the pixel value of the central pixel and the 
mean of the remaining pixels in the cropped block. 
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of the two images is used to model the visibility loss of 
image details.  

The viewing condition is as follows: 1) the distance 
between the viewer and the LCD display is 0.5 m; 2) the 
display diagonal size is 19 inch; 3) the resolution of the 
display is 1280 x 1024 (in pixel); 4) all test images have the 
same size, 320 x 240 (in pixel). 
 

5. RESULTS AND DISCUSSION 
 
The results of three test images are shown in Figs. 5–7. Test 
images with full backlight are shown in Figs. 5(a)–7(a), 
while those with 10% backlight in Figs. 5(b)–7(b). Figs. 
5(c)–7(c) show the visibility difference map, with colors 
blue, cyan, green, yellow, and red corresponding to visibility 
difference values 0, 0.1, 0.2, 0.3, 0.4 or above, separately. In 
Figs. 5(d)–7(d), we highlight pixels with high visibility 
difference, which in turn suggests high probability of quality 
loss, as red dots.  

It can be seen that, illuminated with dim backlight, Fig. 
5(b) suffered great details loss, especially in dark areas. At 
the top-left corner and the right side of Fig. 5(a), for instance, 
the texture visible in the background becomes invisible in 
Fig. 5(b). This fact is accurately predicted by the visibility 
difference map (see Fig. 5(c)), in which the corresponding 
dark areas exhibit high probability of visibility loss. Red 
dots in Fig. 5(d) denote visible pixels that have high 
probability of becoming invisible when illuminated with dim 
backlight. 

Note that while the tilted rod on the bottom-right corner 
of Fig. 5(a) is almost invisible in Fig. 5(b), it should not be 
considered as having great visibility loss. The reason is that 
even in full backlight, the rod’s texture is too dark to be 
clearly discerned, so the rod’s being invisible while being 

illuminated with dim backlight does not ruin the image 
quality. Since we aim to target the quality loss caused by the 
visibility loss instead of the visibility itself, invisible pixels 
that are invisible in the first place should not be considered. 
It can be seen in Fig. 5(d) that our method faithfully reflects 
this fact. 

  
                      (a)                                             (b) 

  
                      (c)                                             (d) 

Fig. 6. Prediction of visibility loss for “Pond”. (a) Original image 
illuminated with full backlight. (b) Original image illuminated with 
dim backlight. (c) Visibility difference map. Colors blue, cyan, 
green, yellow, and red correspond to visibility difference values 0, 
0.1, 0.2, 0.3, 0.4 or above, separately. (d) Prediction of visibility 
loss due to dim backlight. All visible pixels that become invisible
are marked in red. 

  
                      (a)                                                  (b) 

  
                      (c)                                                  (d) 

Fig. 5. Prediction of visibility loss for a screenshot from the game 
“Far Cry”. (a) Original image illuminated with full backlight. (b) 
Original image illuminated with dim backlight. (c) Visibility 
difference map. Colors blue, cyan, green, yellow, and red 
correspond to visibility difference values 0, 0.1, 0.2, 0.3, 0.4 or 
above, separately. (d) Prediction of visibility loss due to dim 
backlight. All visible pixels that become invisible are marked in 
red. 

 

Fig. 4. Determining the maximum backlight Lm, luminance of the 
black level of the display Lb, and gamma correction coefficient � by 
linear regression. In this example, Lm=191.33, Lb=0.25 and �=2.25. 
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For other test images, the method also works properly. 

In Fig. 6(a), the rock visible at the bottom side becomes 
hardly visible in Fig. 6(b). This fact is in accordance with 
the predicted result in Fig. 6(d). Also, at the top-left corner 
of Fig. 7(a) and Fig. 7(b), where the tree branches turn from 
visible to invisible, the corresponding visibility loss is 
detected, shown in Fig. 7(d). 

Although most of the prediction for visibility loss is 
accurate, there are times when the prediction fails. For 
example, see the false prediction right above the moon in 
Fig. 7(d). These erroneous predictions often occur near the 
transition of bright and dark area, and can be explained by 
ringing artifacts. Since our method primarily deals with the 
image’s pyramid sub-bands, ringing artifacts tend to appear 
while performing image reconstruction. As a result, these 
artifacts appear near sharp transitions of the pixel brightness 
or the boundary of the image (see the right side of Fig. 6(d)). 

We also made a performance comparison between the 
HDR-VDP-2 [2], DRIM [6], and the proposed method. For 
the HDR-VDP-2 and DRIM metrics, the image illuminated 
with full backlight is used as the reference image, and the 

image illuminated with dim backlight is used as the test 
image. The results are shown in Fig. 8. The luminance value 
of Fig. 8(b), compared with Fig. 8(a), clearly decreases.   
This luminance reduction causes details loss in the top-left 
and the right side  of the image, but the details in other parts 
of the image are still visible. For this pair of images, the 
HDR-VDP-2 metric detects pixels with luminance reduction 
(the red pixels in Fig. 8(c)).  However, from Fig. 8(c), it is 
hard to tell if an image region becomes invisible or not.  The 
DRIM metric detects pixels with contrast loss (the green 
pixels in Fig. 8(d)). It can be seen that most of the detected 
pixels have low intensity values. This is because the dim 
pixels lose more contrast than the bright pixels as the 
backlight dims. From Fig. 8(d), we can see that though the 
green pixels cover most image regions with details loss, the 
result is not accurate enough because the contrast loss does 
not necessary imply the visibility loss. The proposed method, 
on the other hand, detects the pixels with visibility 
difference (the red pixels in Fig. 8(e)). The main difference 
between our result and that of DRIM metric is that the pixels 
that are invisible even when illuminated with full backlight 
are excluded in our result. For example, some pixels in the 
top-left corner of the image are invisible both in Fig. 8(a) 
and Fig. 8 (b). These pixels are not detected by our method 

  
                         (a)                                                  (b) 

  
                       (c)                                                    (d) 

 
(e) 

Fig. 8. Performance comparison. The visibility difference between 
image (a) and image (b) is predicted by metrics (c) HDR-VDP-2 
[2], (d) DRIM [6], and (e) the proposed method.  

  
                             (a)                               (b) 

  
                             (c)                               (d) 

Fig. 7. Prediction of visibility loss for “Moonlight”. (a) Original 
image illuminated with full backlight. (b) Original image
illuminated with dim backlight. (c) Visibility difference map. 
Colors blue, cyan, green, yellow, and red correspond to visibility
difference values 0, 0.1, 0.2, 0.3, 0.4 or above, separately. (d) 
Prediction of visibility loss due to dim backlight. All visible pixels 
that become invisible are marked in red. 
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because the visibility of them does not change due to the 
dimmed backlight. 
 

6. CONCLUSION AND FUTURE WORK 
 
We have proposed a visibility model to estimate the 
visibility of images illuminate with dim backlight. The 
proposed model incorporates two HVS models, the CSF 
model and the contrast masking model. The former enables 
our model to estimate the visibility of each pixel in a 
displayed image, while the latter allows our model to detect 
invisible pixels caused by high-contrast textures surrounding 
such pixels. Experimental results show that while the 
existing methods, HDR-VDP-2 and DRIM, detect the 
luminance reduction and contrast loss due to the dim 
backlight, they cannot detect the visibility loss. Our model, 
in contrast, well predicts the visibility loss of image pixels 
and thus helps the image quality assessment for dimmed 
images.  

The color vision of HVS is omitted in the proposed 
model, and thus we plan to extend our model by modeling 
the human perceptions for different color channels of the 
image data. We also plan to extend our model to video 
sequences to make it more general and useful.  
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