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Abstract 

 

A salient aspect of our daily visual experiences is the aesthetic impressions. Why do we 

enjoy some views but not others? Researchers have found visual attributes that we enjoy 

seeing for colors, shapes, and objects, and even for human faces and bodies; however, 

aesthetic preferences for holistic visual experiences—views that encompass many different 

objects and attributes—remain largely undescribed. What principles govern holistic visual 

aesthetics beyond preferences for certain objects or features? We found computational 

evidence in support of the prototype principle for visual aesthetics. We measure each 

view’s prototypicality based on its average similarity to a large reference set of images in 

feature spaces from pretrained deep convolutional neural networks (AlexNet and VGG-16). 

For views consisting of inanimate content, the more prototypical the high-level visual 

representations are, the more aesthetically pleasing the views appear. This prototype effect 

suggests a functional answer to why we like what we like: We like typical visual 

experiences that are common, safe, or neutral. Thus, aesthetic preferences from holistic 

visual experiences are systematic, explainable, and reflect the underlying organization of 

visual representations of the world. Our method demonstrates a new way to explore both 

vision and aesthetics using computational models—besides investigating specific visual 

properties or isolated objects, we can also explore the organization of visual 

representations and aesthetic experiences holistically, getting us one step closer to 

understanding how we see, what we like, and why we like what we like in everyday life.  

 

Keywords: aesthetics; prototype; deep learning; visual scene  
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1. Introduction 

 

Whether we are walking in our own neighborhoods or flying to the opposite side of 

the world, people invest time, resources, and effort to see new sceneries. Besides 

expanding knowledge, a major purpose of such behaviors is to experience the beauty of 

what we see. This massive popularity of “sightseeing” comes with abundant mysteries, 

along with one central question: Why do some views look better than others?  

 

1.1 Regularities in visual aesthetics 

A common approach to understand “what looks good” is to ask how specific 

attributes influence aesthetic experiences, such as color (Martindale & Moore, 1988; 

Palmer & Schloss, 2010), curvature (Bar & Neta, 2006), complexity (Berlyne, 1970), object 

size (Chen et al., 2022; Konkle & Oliva, 2011; Linsen et al., 2011), and various kinds of 

orientation (Avrahami et al., 2004; Chen et al., 2018; Latto et al., 2000; Mather, 2012). 

These properties were commonly studied with simple stimuli, such as shapes (Gartus & 

Leder, 2013; Silvia & Barona, 2009), objects (Halberstadt & Rhodes, 2003), and abstract 

compositions (Locher et al., 2005). While simple and direct, this line of research 

demonstrated meaningful consensus and regularities in aesthetics across people. 

Nevertheless, it left an important question unanswered: How do we explain aesthetic 

impressions in holistic visual experiences from the real world, which encompass many 

objects and features?1 

Some studies pioneered in exploring holistic visual aesthetics. One route taken was 

to circumvent the difficulties in characterizing holistic visual experiences as testable factors 

and explore neural correlates of aesthetics (Kaiser, 2022; Vessel et al., 2019; Yue et al., 

2007). While this approach described what substrates realized the mental computations 

for aesthetics (at the implementation level; Marr, 1982), it provides limited insight for the 

computations themselves (at the computational and algorithmic levels). Other studies 

alternatively investigated influences from experimenter-selected factors, such as 

naturalness (Kaplan et al., 1972), symmetry (Damiano et al., 2023), and contour properties 

(Farzanfar & Walther, 2023). While this approach produces intriguing findings, it is 

constrained to specific dimensions according to researchers’ intuitions. 

 

1.2 The present study: The aesthetic prototype effect 

The present study moved from exploring specific featural preferences to 

understanding general principles for holistic visual aesthetics that may provide not only 

answers to “what we like”, but also “why we like what we like”. We focused on a pervasive 

 
1 The caveats of reductionist approach in visual aesthetics in fact came up in researching scene perception as 
well: Just as it has not proved possible to combine featural aesthetic effects to predict holistic visual 
aesthetics, it has not been possible to explain holistic scene perception based solely on visual features 
selected or defined by researchers (Epstein & Baker, 2019). 
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phenomenon that connects multiple aspects of vision: the prototype effect, in which people 

show prioritizations for central representations of categories. Specifically, visual 

preferences for category prototypes have been observed for faces (Langlois & Roggman, 

1990; Ryali et al., 2020), biological organisms (Halberstadt & Rhodes, 2003; Younger, 

1990), man-made objects (Landwehr, Labroo, & Herrmann, 2011; Whitfield & Slatter, 

1979), abstract shapes (Posner & Keele, 1968; Solso & Raynis, 1979), and dynamic stimuli 

such as biological motion (Chen et al., 2023). This robust phenomenon not only reveals 

how feature processing led to category-based organizations of visual representations, but 

also provides natural explanations to aesthetic experiences, such as deviance detection (for 

alternatives, see Vogel et al., 2021). Thus, we asked: Can we explain aesthetics with a 

prototype principle for rich visual experiences? 

To answer this question, we overcame two difficulties: First, prototypes are 

typically defined within an experimenter-selected category. However, how holistic visual 

experiences are categorized in visual systems is empirically unanswered. Thus, we did not 

limit the present study to certain categories of scenes, and instead, used prototype effects 

to reveal the categorical structures. That is, the discovery of a prototype effect would 

suggest the existence of a visual category (or a cluster of several categories) among the 

tested images. To start, we explored the prototype preferences in the broadest possible 

category—the full diversity of visual experiences—whether or not they belong to 

categories previously tested (i.e., specific scene types or objects). Second, it is not 

straightforward to empirically measure prototypicalities of holistic visual experiences. We 

decided against subjective ratings and estimated prototypicality using representations 

discovered in a data-driven fashion from deep neural networks (DNNs). While it remains 

debated whether DNNs accurately model human vision (Baker et al., 2018; Szegedy et al., 

2013), they have undoubtedly uncovered a subset of useful feature representations for 

common tasks such as object recognition (Rajalingham et al., 2018; Yamins et al., 2014). 

In six studies, we used diverse realistic photographs to capture rich visual 

experiences and tested the relationship between prototypicalities and people’s aesthetic 

impressions from these views. To rule out specific alternative explanations, we examined 

three samples of observers and four diverse image sets, and used features discovered in 

two DNN models that were pretrained with different image sets.  

 

 

2. Study 1: An Aesthetic Prototype Effect for Inanimate Visual Experiences 

 

2.1 Method 

2.1.1 Overview.  The prototypicality of a set of images were estimated by comparing 

their DNN features to each image in a separate and larger image set. Human observers 

rated aesthetic impressions for images in the target set to assess the effect of 

prototypicality on aesthetic values (Figure 1). We tested images containing social 
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information or only inanimate information as two conditions since they tend to engage 

different visual processing (Caramazza & Shelton, 1998). To confirm that our results were 

based on meaningful visual representations, we also employed a control model which 

maintained the same architecture as the pretrained DNN model, but the model parameters 

were randomly permuted (Baek et al., 2021; Kim et al., 2021; Ramanujan et al., 2020). 

 

 
Figure 1 Procedure Overview.  An overview of the procedure is depicted here: (a) Two sets 

of images—the target and population image set—were used to measure prototype 

preference. A hundred human observers rated the images in the target set on their 

aesthetic values. (b) DNN features for images in both sets were extracted. We estimated the 

prototypicality of each image in the target set by calculating its average cosine similarity 

with each of the images in the population set. The prototypicalities were estimated 

separately using activities in each layer of the DNN models. (c) We then calculated the by-

image Spearman’s rank correlation between the target images’ average aesthetic ratings by 

humans and estimated prototypicalities by model simulations. 
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2.1.2 Target image set—Keyword Aesthetics dataset.  An image set—named 

Keyword Aesthetic dataset (KAD)—consisting of 78 inanimate and 78 social images (Figure 

1a) was constructed following these steps: (a) 700 words were randomly selected from the 

top 40,000 frequent words based on the British National Corpus word frequency database 

(Leech & Rayson, 2014). (b) These words were used as Google Image search keywords with 

the search tool option of size set to “large”, and the top 100 results for each keyword were 

examined. (c) The first image passing these criteria (Chen et al., 2022) was selected: 

Related to the keyword, easily interpretable as a real photograph without visible 

alterations, larger than 550 x 550 px, has at least one distinct object (excluding uniform 

textures), with content that is not obviously emotional, and does not include any symbols 

(e.g., a brand mark or dollar sign) or text. (d) For the inanimate images, the image must not 

contain any part of realistic or cartoon depictions of people, body parts, or animals. For the 

social images, the image must contain at least one human eye visible enough to tell if it was 

opened or closed. (e) Images were retained only if the corresponding keywords resulted in 

the selection of both inanimate and social images. This procedure yielded 78 inanimate 

images and 78 social images from 78 keywords. The images were then resized to their 

respective smallest sizes that were still larger than 550 x 550 px and cropped to retain a 

random 500 x 500 px region. This random cropping was used to diversify the framing in 

the image set, since photographs online were often selectively framed by people in ways 

that may reflect certain biases. Only images that still met the selection criteria in (d) and (e) 

after cropping were included. The images were then scaled down to the size of 224 x 224 

px, which was the input image size the models required. All images used in this study are 

publicly available in the OSF repository here: 

https://osf.io/mqhxg/?view_only=e8e6d8435f2749558ea1fde16bd4c951   . 

 

2.1.3 Population image set—ImageNet.  A subset of 1,000 images from the ImageNet 

Large Scale Visual Recognition Challenge (Russakovsky et al., 2015) was used as the 

population set (Figure 1a). This subset was formed by randomly selecting one image per 

class from the 1,000 classes in the validation set and replacing images that did not appear 

to be unaltered realistic photographs with the next eligible images (sorted by file names). 

Thus, they included both inanimate and social images. These images were then resized to 

256 x 256 px and cropped to retain a random 224 x 224 px region. 

 

2.1.4 Observers.  A convenience sample of 100 naïve undergraduate students from 

the University of California, Los Angeles (UCLA) community (81 females, 17 males, 1 other 

gender, 1 undisclosed, Mage=20.6, SDage=2.5, rangeage=[18, 31]; all with normal or corrected-

to-normal vision) completed a 30-minute within-subjects online experiment in exchange 

for course credit. An additional 30 observers participated but were removed based on 

predetermined criteria (see details in the Observer exclusions section below). An 

intuitively large sample size was used, as effect size estimation was technically difficult due 
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to the novelty and complexity of the analyses. The reliability of the effects was evaluated 

carefully by internal replications across different observer samples, image sets, and 

models. The study was approved by the UCLA Institutional Review Board. 

 

2.1.5 Experiment procedure.  Observers were directed to a website where stimulus 

presentation and data collection were controlled via custom software written in HTML, 

CSS, JavaScript, JQuery, and PHP. Observers were not allowed to participate using phones 

or tablets. After completing a CAPTCHA task (using the hCaptcha service: 

https://www.hcaptcha.com/), they were asked to maximize their window size, informed 

about their task, quizzed about their understanding of the instructions, and provided their 

consent. 

During each trial, observers viewed each image from the preprocessed target set 

one-by-one and were asked to rate “how visually pleasing you find each image to be”, and 

“In other words, how good/beautiful do you think the image looks”. They rated each image 

on a 6-point Likert scale with labels (certainly pleasing, probably pleasing, guess pleasing, 

guess not pleasing, probably not pleasing, and certainly not pleasing). We chose to use 

multiple descriptions of aesthetic judgements that all pointed to the idea of beauty to 

prevent participants from overanalyzing a particular term. Research has also supported the 

use of “pleasingness” and “beautiful” scales to obtain judgments from the single dominant 

dimension of aesthetics (Augustin et al., 2012; Jacobsen et al., 2004; Russel & George, 

1990). 

Before the formal experiment began, the observers first practiced using the rating 

scale on one practice image. They then rated the 78 inanimate images and 78 social images 

(preprocessed with above procedures), mixed in a different random order for each 

observer. A random selection of 35 inanimate images and 35 social images (different for 

each observer) was then repeated a second time. The ratings from these repeats were only 

used to measure test-retest reliability for the purpose of observer exclusion, and were 

otherwise discarded in the main analyses. Observers were given a self-paced break halfway 

through the rating task. At the end of the experiment, observers answered a series of 

debriefing questions to ensure they had completed the experiment without any issues. 

Additional questionnaires were administered for the purposes of other studies and were 

not analyzed for this study. 

 

 2.1.6 Observer exclusions.  Thirty observers were excluded based on criteria 

decided before data collection began, with some observers triggering more than one 

criterion: six observers did not follow the instructions; three observers reported that they 

did not take the experiment seriously; one observer spent less than 0.5 second on at least 

one page of the instructions; three observers had a browser viewport smaller than 800px × 

600px; four observers had at least one trial with the image not fully in view during the 

rating task; seven observers hid the experiment browser tab more than three times during 
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the trials; five observers gave the same rating to more than 15 consecutive trials; one 

observer took longer than 120 seconds or shorter than 0.3 seconds to respond for more 

than four trials in either condition; ten observers had test-retest reliabilities lower than 0.5 

in either condition; and four observers took too long to complete the experiment (two SDs 

longer from the mean duration of all observers before exclusions). Detailed documentation 

of all exclusions is publicly available in the OSF repository here: 

https://osf.io/mqhxg/?view_only=e8e6d8435f2749558ea1fde16bd4c951 

 

 2.1.7 The pretrained visual feature model.  We chose DNN models to extract visual 

features in images that has been proved useful for object recognition. AlexNet (Krizhevsky, 

2014; Krizhevsky et al., 2017) was used due to its popularity and simplicity relative to 

other models. The model was implemented in PyTorch 1.12.1 with pretrained weights 

fixed from training on the ImageNet object classification task. Visual features for each 

image in both target and population image sets were the embeddings in each layer, 

obtained by forward passes through the models. Each image resulted in 13 layers 

(including Convolutional, ReLU, and Max-pooling layers) of visual features represented in 

matrices of different sizes. (We did not include the classifier layers, i.e., the Dropout and 

Fully-connected layers, because the control model was not discriminative across different 

images at those layers.) The matrix from each layer for each image was then flattened to a 

vector for prototypicality estimation detailed in a later section. For example, on Layer 

Conv-5, the embeddings of an image were flattened from a 256 x 13 x 13 matrix to a vector 

of size 43264.  

 

 2.1.8 The control model.  The control model was identical to the pretrained AlexNet, 

except that its parameters were permuted. The permutation was done separately for each 

layer, as well as for the weights and biases. Since the permutation process was random, we 

ran 100 different iterations of the control model and averaged the analysis results. The 

procedure for visual feature extractions was identical to that performed on the pretrained 

model reported above.  

 

 2.1.9 Prototypicality estimation.  To measure the prototypicality of each image 

(Figure 1b), we separately analyzed the features from the activities in each layer of the 

DNN models. For each image in the target set, we measured the pairwise cosine similarities 

between its feature vector and the feature vector for each image in the population set. 

Then, we averaged the target image’s similarities to all population images. A higher 

similarity value indicates that the target image is more closely aligned with the average 

representation of the visual scenes depicted in the population images. This measure is thus 

an index of prototypicality. For each image in the target image set, we obtained a 

prototypicality score from each layer of the pretrained model, and 100 prototypicality 

scores from each layer of the 100 iterations of the control model. 
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 2.1.10 Relation between prototypicality and aesthetic ratings.  With the estimated 

prototypicality index, we tested its effect on aesthetic impressions by assessing Spearman’s 

rank correlation (Figure 1c). Again, this analysis was done separately for each layer. For 

human responses, the rating z-scores were calculated within each subject and each image 

type separately. We then correlated image prototypicalities with each observer’s aesthetic 

rating z-scores. For the control model, we averaged the estimated prototypicality indices 

from 100 iterations before conducting the correlation. We then analyzed the correlation 

coefficients using a three-way repeated-measure ANOVA (including 2 weights 

(pretrained/control) x 13 layers x 2 image types (inanimate/social)). Following the results 

from the ANOVA, planned paired-sample t-tests comparing the pretrained and the control 

models indicated whether we found a reliable prototype effect in each condition. 

 

2.2 Results and discussion 

 The average correlation coefficients for the convolutional layers are plotted in 

Figure 2a. The results from the ReLU and Max-pooling layers were similar to the 

corresponding convolutional layers and thus were omitted from all figures and reporting 

for clarity and conciseness. These results are publicly shared 

(https://osf.io/mqhxg/?view_only=e8e6d8435f2749558ea1fde16bd4c951). From 

inspecting the figures, three observations emerged: (a) The pretrained and control models 

led to different results. (b) For the pretrained model, the results differed between the 

inanimate and social images. (c) The inanimate images showed positive correlations only in 

layers above Conv-2 of pretrained AlexNet. These observations were confirmed by a 

repeated-measure ANOVA: The weights x layers x image types interaction was significant 

(F(12, 1188)=22.36, p<.001, ηp2=.184), along with all the two-way interactions (Fs>70.00, 

ps<.001, ηp2s>.400). Critically, for the inanimate images, the correlations between the 

ratings and the prototypicalities were significantly more positive with the pretrained 

model than with the control model in all layers (ts(99)>2.80, ps<.006, ds>0.28) except for 

Conv-1 (t(99)=1.86, p=.066, d=0.19). For the social images, the correlations were similar 

across the models, not significantly different in Conv-2 and Conv-4 (ts(99)<1.57, ps>.119, 

ds<0.16), and significantly more negative with the pretrained model in the rest of the 

layers (ts(99)>3.05, ps<.003, ds>0.30). Thus, the more prototypical an inanimate image is 

based on representations extracted later than Conv-2, the more aesthetically pleasing it 

appears. This aesthetic prototype effect was not observed in the earlies layer nor for 

images containing social content.  
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Figure 2 Results from Study 1 and 2.  For (a) Study 1(within-subjects design) and (b) Study 

2 (between-subjects design), correlations between human aesthetic ratings (z-scored) and 

image prototypicalities from each convolutional layer of AlexNet are plotted separately for 

four conditions. All error bars represent between-subjects 95% confidence intervals.  

 

 

3. Study 2: Between-subjects Replication 

 

Could the differences found between inanimate and social images arise from task 

demands, such as applying different strategies upon noticing the two categories? We ruled 

out this possibility with a between-subjects replication experiment. 

 

3.1 Method 

The method of Study 2 was identical to that of Study 1 except as noted below.  

 

3.1.1 Observers.  Another sample of 200 naïve observers of the same nature as 

Study 1 (165 females, 33 males, 2 other genders, Mage=20.6, SDage=2.7, rangeage=[18, 48]) 

completed a 20-minute between-subjects experiment. An additional 47 observers 

participated but were removed based on predetermined criteria (see details in the 

Observer exclusions section below). The sample size was chosen so that each of the two 

conditions has a sample size that was identical to that used in Study 1.  

 

3.1.2 Experiment procedure.  All procedures were identical to Study 1 except that 

the observers were randomly and evenly assigned to the inanimate or social image 
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condition, and only rated the 78 images and 35 repeats in their respective conditions. 

 

3.1.3 Observer exclusions.  Forty-seven observers were excluded based on criteria 

decided before data collection began, with some observers triggering more than one 

criterion: six observers did not follow the instructions; eighteen observers reported that 

they did not take the experiment seriously; seven observers had a browser viewport 

smaller than 800px × 600px; nine observers had at least one trial with the image not fully 

in view during the rating task; five observers hid the experiment browser tab more than 

three times during the trials; six observers gave the same rating to more than 15 

consecutive trials; eight observers took longer than 120 seconds or shorter than 0.3 second 

to respond for more than four trials; nine observers had test-retest reliabilities lower than 

0.5; and five observers took too long to complete the experiment (two SDs longer from the 

mean duration from all observers before exclusions). 

 

 3.1.4 Analysis.  Instead of a repeated-measure ANOVA, a mixed-measure ANOVA 

was conducted with the image type as a between-subjects factor.  

 

3.2 Results and discussion 

 The results are plotted in Figure 2b. The same observations from Study 1 were 

apparent: Positive correlations were observed for layers above Conv-2 only for the 

pretrained AlexNet and the inanimate images. These observations were confirmed by the 

mixed-measure ANOVA. The weights x layers x image types interaction was significant 

(F(12, 2376)=36.70, p<.001, ηp2=.156), along with all the two-way interactions (Fs>40.00, 

ps<.001, ηp2s>.170). Critically, for the inanimate images, the correlations between the 

ratings and the prototypicalities were significantly more positive with the pretrained 

model than with the control model in all layers (ts(99)>4.00, ps<.001, ds>0.40) except for 

Conv-1 (t(99)=1.45, p=.150, d=0.15). For the social images, the correlations were similar 

across the models, not significantly different in Conv-2 (t(99)=1.20, p=.233, d=0.12), and 

significantly more negative with the pretrained model in the rest of the layers (ts(99)>2.03, 

ps<.045, ds>0.20). Thus, after eliminating possible demand characteristics caused by rating 

both inanimate and social images, we replicated the findings from Study 1: The more 

prototypical an inanimate image is based on visual representations extracted in layers later 

than Conv-2, the more aesthetically pleasing it appears. This aesthetic prototype effect was 

again not observed for low-level visual presentations nor for images containing social 

information. 

 

 

4. Study 3: Generalization to An Alternative Image Population 

 

How general is the aesthetic prototype effect? We replicated the effect with a more 
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diverse population image set to assess whether the prototype preference operates over 

varying content. 

 

4.1 Method 

Using both the within- and between-subjects experiment data in Study 1 and 2, the 

same analyses were replicated with a new population image set— Aesthetic Visual Analysis 

(AVA; Murray et al., 2012). A subset of 995 images was used. We chose AVA because it is a 

large and diverse dataset that spans a wide range of aesthetic values from various thematic 

photography challenges. We selected a subset of images that maximized the range of 

aesthetic values following these steps: (a) All images from grayscale challenges or that 

were grayscale were excluded. (b) Remaining images were binned into 8 bins (1-2, 2-3, …, 

8-9) based on average aesthetic votes (on a scale from 1-10). (c) The images in the two 

extreme bins (1-2, and 8-9) were all selected (rather than randomly sampled) due to the 

small size (3 images and 22 images respectively). (d) 162 images were randomly sampled 

from each of the remaining bins to achieve a subset size of around 1,000 images. In the end, 

995 images were chosen, resized to 256 x 256 px, and cropped to retain a random 224 x 

224 px region. 

 

4.2 Results and discussion 

 The results are plotted in Figure 3a and 3b, where similar patterns emerged. 

Positive correlations were observed for layers above Conv-2 only with inanimate images 

using the pretrained model. This observation was confirmed by the ANOVAs: For the 

within-subjects experiment, the weights x layers x image types interaction was significant 

(F(12, 1188)=85.16, p<.001, ηp2=.462), along with all the two-way interactions (Fs>60.00, 

ps<.001, ηp2s>.400). For the inanimate images, the correlations between the ratings and the 

prototypicalities were significantly more positive with the pretrained model than with the 

control model in all layers (ts(99)>8.40, ps<.001, ds>0.84) except for Conv-1, where the 

correlation was more negative with the pretrained model (t(99)=9.20, p<.001, d=0.92). For 

the social images, the correlations were significantly more negative with the pretrained 

model than in the control model in all layers (ts(99)>2.31, ps<.023, ds>0.23).  

For the between-subjects experiment, the weights x layers x image types interaction 

was also significant (F(12, 2376)=102.81, p<.001, ηp2=.342), along with all the two-way 

interactions (Fs>50.00, ps<.001, ηp2s>.200). For the inanimate images, the correlations 

between the ratings and the prototypicalities were significantly more positive with the 

pretrained model than with the control model in all layers (ts(99)>8.65, ps<.001, ds>0.86) 

except for Conv-1, where the correlation was more negative with the pretrained model 

(t(99)=8.39, p<.001, d=0.84). For the social images, the correlations were similar across the 

models, not significantly different in Conv-3 (t(99)=1.66, p=.100, d=0.17), and significantly 

more negative with the pretrained model in the rest of the layers (ts(99)>2.16, ps<.033, 

ds>0.21. The results from both Study 1 and 2 were thus replicated in Study 3, and 
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generalized using AVA as the population image set. 

 

 

 
Figure 3 Results from Study 3 and 4.  In the same manner as in Figure 2, correlations 

between aesthetics and prototypicalities are plotted for Study 3 and 4, where AVA served 

as the population image set. Aesthetic ratings from the within-subjects experiment were 

used in (a) and (c), and those from the between-subjects experiment were used in (b) and 

(d). AlexNet pretrained with ImageNet was used in (a) and (b), and AlexNet pretrained 

with the ecoset (including people categories) was used in (c) and (d).  
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5. Study 4: Generalization to a Model Trained with People Categories 

 

Could the differences found between inanimate and social images arise from a lack 

of social features extracted by a model that was not trained to classify people? We ruled out 

this possibility using AlexNet pretrained with different people categories. 

 

4.1 Method 

The same analyses from Study 3 were replicated with an AlexNet that was 

pretrained to classify the categories in a new image dataset termed ecoset, which captures 

categories relevant to humans (Mehrer et al., 2021). The categories were selected based on 

frequent and concrete words and included inanimate objects, animals, and people (e.g., 

hairbrush, chipmunk, and child). Only the five convolutional layers were included in the 

analyses.  

 

4.2 Results and discussion 

 The results are plotted in Figure 3c and 3d, where similar patterns emerged. 

Positive correlations were observed for layers above Conv-2 only with inanimate images 

using the pretrained model. This observation was confirmed by the ANOVAs: For the 

within-subjects experiment from Study 1, the weights x layers x image types interaction 

was significant (F(4, 396)=199.59, p<.001, ηp2=.668), along with all the two-way 

interactions (Fs>50.00, ps<.001, ηp2s>.340). For the inanimate images, the correlations 

between the ratings and the prototypicalities were significantly more positive with the 

pretrained model than with the control model in all layers (ts(99)>9.50, ps<.001, ds>0.95) 

except for Conv-1, where the correlation was more negative with the pretrained model 

(t(99)=14.98, p<.001, d=1.50). For the social images, the correlations were similar across 

the models, not significantly different in Conv-3 and Conv-4 (ts(99)<0.95, ps>.350, 

ds<0.10), and significantly more negative with the pretrained model in the rest of the layers 

(ts(99)>2.50, ps<.015, ds>0.25).  

For the between-subjects experiment from Study 2, the weights x layers x image 

types interaction was also significant (F(4, 792)=212.65, p<.001, ηp2=.518), along with all 

the two-way interactions (Fs>45.00, ps<.001, ηp2s>.190). For the inanimate images, the 

correlations between the ratings and the prototypicalities were significantly more positive 

with the pretrained model than with the control model in all layers (ts(99)>10.00, ps<.001, 

ds>1.00) except for Conv-1, where the correlation was more negative with the pretrained 

model (t(99)=16.26, p<.001, d=1.63). For the social images, the correlations were similar 

across the models, not significantly different in Conv-3 and Conv-4 (ts(99)<0.90, ps>.380, 

ds<0.09), and significantly more negative with the pretrained model in the rest of the layers 

(ts(99)>2.65, ps<.010, ds>0.25). The findings were thus replicated even with a model 
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pretrained with people categories. 

 

 

6. Study 5: Generalization to a Diverse Target Image Set 

 

In the previous four studies, we used a target image set that was specifically 

collected to contain no emotional images. Given the apparent link of emotions to aesthetics, 

it is possible that the prototype effect can only explain aesthetic experience when effects of 

emotions are removed. We ruled out this possibility by generalizing the prototype effect to 

a new target set that contained dramatic emotional content.  

 

6.1 Method 

All analyses conducted in Studies 1 through 3, involving two population image sets, 

were replicated with a new target image set—Open Affective Standardized Image Set 

(OASIS; Kurdi et al., 2017), with previously collected aesthetic ratings (Brielmann & Pelli, 

2019). The pretrained AlexNet model was the standard version which was trained on 

ImageNet. 

6.1.1 Target image set—OASIS.  A subset of 84 inanimate images from OASIS was 

used as the target image set. We chose OASIS for two reasons. First, aesthetic ratings were 

available (Brielmann & Pelli, 2019). Second, the images were specifically selected to be 

emotional, a criterion opposite to that of the KAD we tested in Studies 1 thorough 3. We 

examined the subset of 225 images that were rated by the largest sample from Brielmann 

and Pelli (2019), and used the 84 images that contained only inanimate content, according 

to the same criteria used for the inanimate KAD. All images were resized from their original 

size of 500 x 400 pixel (px) to 280 x 224 px, and were either cropped from the center to 

224 x 224 px, or scaled horizontally (with distortions) to 224 x 224 px, forming the 

cropped and scaled OASIS datasets respectively. Since we were using the aesthetic ratings 

collected by Brielmann & Pelli (2019) (see the next subsection for details), we chose to 

crop the images from the center regions (rather than random regions as in above 

experiments) based on the intuitive assumption that the aesthetic ratings were more likely 

based on the content in the center. 

6.1.2 Aesthetic ratings.  Aesthetic ratings of OASIS were collected in a past study 

(Brielmann & Pelli, 2019) from a group of diverse observers tested on the online 

crowdsourcing platform Amazon Mechanical-Turk. We used a subset of data by only 

including observers that were clinically normal and who rated the subset of images with 

the largest sample size. To maintain a consistent criteria of data quality, we excluded an 

additional four observers who gave the same rating to more than 15 consecutive trials (the 

same criterion adopted in Studies 1 and 2). This procedure led to the inclusion of ratings 

from a total of 326 observers. We then converted the ratings to z-scores within each 

subject, based on only the subset of images used in our analyses. 
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6.2 Results and discussion 

 The results are plotted in Figure 4, where a clear pattern emerged. The pretrained 

model showed more positive correlations compared to the control models for all 

conditions. This observation was confirmed by four separate repeated-measure ANOVAs. 

For both cropped and scaled OASIS target images with ImageNet as the population set, the 

two-way interactions of weights x layers were significant (Fs>140.00, ps<.001, ηp2s>.300). 

The correlations between the ratings and the image prototypicalities were significantly 

more positive with the pretrained model than with the control model in all layers 

(ts(325)>16.10, ps<.001, ds>0.89). The same target images with AVA as the population set 

led to similar results, where the two-way interactions of weights x layers were significant 

(Fs>160.00, ps<.001, ηp2s>.300), and the correlations were significantly more positive with 

the pretrained model than with the control model in all layers (ts(325)>9.95, ps<.001, 

ds>0.55). Thus, using a different set of images containing emotional content, the aesthetic 

prototype effect for inanimate images was again replicated, demonstrating its generality. 
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Figure 4 Results from Study 5.  In the same manner as in Figure 2, correlations between 

aesthetics and prototypicalities are plotted for Study 5, where OASIS was used as the target 

image set. The population image set was ImageNet for (a) and (b), and was AVA for (c) and 

(d). Cropped OASIS images were used for (a) and (c), and scaled OASIS images were used 

for (b) and (d).  
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7. Study 6: Generalization to An Alternative DNN Model 

 

We next generalized the findings using a different DNN model: VGG-16 (Simonyan & 

Zisserman, 2014), chosen for its higher similarity to human behaviors and brain activities 

(Schrimpf et al., 2020) compared to AlexNet. We did not choose other DNN models, such as 

VGG-19 (Simonyan & Zisserman, 2014) or ResNet-50 (He et al., 2016), because their large 

number of features would have exhausted our hardware memory capacity at the time of 

this study. 

 

7.1 Method 

We conducted the same analyses using a larger DNN model, VGG-16. Given the large 

number of layers in VGG-16, we used only the latest sublayer for the five convolution layers 

(i.e., Conv-1.2, Conv-2.2, Conv-3.3, Conv-4.3, and Conv-5.3). We also focused on replication 

analyses on two target sets (the inanimate KAD images and the cropped OASIS images) and 

one population set (the AVA). 

 

7.2 Results and discussion 

 The results are plotted in Figure 5, where a clear pattern emerged. The pretrained 

model showed more positive correlations than the control model in later layers. This 

observation was confirmed by two separate repeated-measure ANOVAs. For the inanimate 

KAD images, the weights x layers interaction was significant (F(4, 99)=172.12, ps<.001, 

ηp2=.635), and the correlations were significantly more positive with the pretrained model 

than with the control model in all tested layers (ts(99)>2.80, ps<.001, ds>0.25) but Conv-

1.2, where the correlation was more negative with the pretrained model (t(99)=6.12, 

p=.005, ds=0.61). For the cropped OASIS images, the weights x layers interaction was also 

significant (F(4, 325)=564.84, ps<.001, ηp2=.635), and the correlations were significantly 

more positive with the pretrained model than with the control model in all tested layers 

(ts(325)>6.90, ps<.001, ds>0.35) except for Conv-3.3, where no difference was observed 

(t(325)=0.10, p=.918, ds=0.01). Thus, using a different DNN model, the aesthetic prototype 

effect was again replicated. 
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Figure 5 Results from Study 6.  In the same manner in Figure 2, correlations between 

aesthetics and prototypicalities are plotted for Study 6, where VGG-16 was used to extract 

visual features and AVA was the population set. The target sets were (a) inanimate KAD 

images, and (b) cropped OASIS.  

 

 

8. General Discussion 

 

What principle governs aesthetic impressions arising from holistic visual 

experiences? We demonstrated a robust aesthetic prototype effect: The more prototypical 

an inanimate image is, the more aesthetically pleasing it appears (Studies 1 and 2). This 

preference can be observed with different population image sets (Study 3), for both 

emotional and non-emotional images (Study 5), and does not rely on features only 

discovered in specific DNN models (Study 4 and 6). Our findings also reveal possible stages 

of visual processing that gives rise to the prototype preference. Across six studies, the 

prototype effect was consistently observed with representations at later convolution layers 

around Conv-4 and Conv-5, which likely corresponds to high-level visual processing 

(Khaligh-Razavi & Kriegeskorte, 2014). Also, the prototype effect was absent based on 

representations at Conv-1, suggesting the lack of participation from early vision.  

The correlations found were robust yet small. However, we cannot conclude that the 

prototype principle matters only a little. While we asked the qualitative question of 

whether prototype effects exist, this study did not seek to perfectly model prototypicality 

and thus could underestimate effect sizes. Additional research is required to assess the 

strength of prototype effects in holistic visual experiences. 
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8.1 Why do we like prototypical inanimate visual experiences? 

Why do we like inanimate visual experiences with prototypical high-level 

representations? This preference may arise simply as a byproduct in the fashion of a 

fluency effect: Visual processing of prototypical features are fluent due to their centrality in 

the representational space (Posner & Keele, 1968; Reber et al., 1998; Winkielman et al., 

2006). This perceptual fluency in turn leads to a positive experience (Reber et al., 2004; 

Winkielman et al., 2006), either because it serves as an internal reward for successful 

recognition, or because the positive experience from ease of processing is misinterpreted 

as positive evaluation for the visual experience. 

An intriguing alternative explanation is that aesthetic preferences served functions 

in our evolutionary past. Prototypical features suggest frequently encountered, known, and 

safe or neutral environments (e.g., everyday sightings of paths and homes), whereas 

atypical features may suggest unusual situations that require careful behavioral responses 

(e.g., a forest fire, a bloody room, a polluted lake). A relative aversion to atypical visual 

experiences may thus aid people to seek beneficial environments. 

 Why then was the same aesthetic principle absent for social content? Perhaps the 

specialized visual processes for social content do not construct categories that lead to 

prototype prioritizations. Alternatively, other social factors (e.g., expressions) may 

overpower the prototype preferences. Future studies are required to explore these 

possibilities.  

 

8.2 Relations to other aesthetic phenomena 

How does the current findings relate to many past discoveries of featural 

preferences? We prefer stimuli that are blue (Palmer & Schloss, 2010), curvy (Bar & Neta, 

2006), symmetrical (Jacobsen & Höfel, 2002), inward facing (Chen et al., 2018; Palmer et 

al., 2008), moderately complex (Martindale et al., 1988), and of canonical visual sizes (Chen 

et al., 2022; Konkle & Oliva, 2011; Linsen et al., 2011). Is the prototype preference an 

independent phenomenon, or does it connect to these various preferences? Specific 

features people like may correlate with prototypical representations. For example, 

prototypical features may be of moderate complexity, and thus a preference for moderate 

complexity is in fact a symptom of a more general prototype principle. If this is the case, 

one may be able to find DNN representations that predict visual prototypicality, aesthetic 

preferences, and the presence of these known features.  

The prototype preference may also explain individual aesthetic tastes. Life-long 

personal visual diets may influence how stored visual experiences are distributed in a 

representational space, shifting the prototype in different directions. Thus, the 

prototypicality of an image varies based on past visual exposures, and leads to differences 

in aesthetic preferences. Since visual diets can vary considerably in each person’s micro-

environment, this explanation is consistent with the findings that people’s tastes do not 
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form multiple clusters, but simply deviate in idiosyncratic ways from a common consensus 

(Chen et al., 2022). 

 

8.3 Conclusion 

Taking advantage of the data-driven DNN model features, the present study was 

able to reveal robust aesthetic preferences for holistic visual experiences containing high-

level prototypical features. This proves that aesthetic impressions triggered by holistic 

visual experiences are systematic, explainable, and reflect the underlying organization of 

visual representations. 
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