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A B S T R A C T   

When viewing objects depicted in a frame, observers prefer to view large objects like cars in larger sizes and 
smaller objects like cups in smaller sizes. That is, the visual size of an object that “looks best” is linked to its 
typical physical size in the world. Why is this the case? One intuitive possibility is that these preferences are 
driven by semantic knowledge: For example, when we recognize a sofa, we access our knowledge about its real- 
world size, and this influences what size we prefer to view the sofa within a frame. However, might visual 
processing play a role in this phenomenon—that is, do visual features that are related to big and small objects 
look better at big and small visual sizes, respectively, even when observers do not have explicit access to se
mantic knowledge about the objects? To test this possibility, we used “texform” images, which are synthesized 
versions of recognizable objects, which critically retain local perceptual texture and coarse contour information, 
but are no longer explicitly recognizable. To test for visual size preferences, we first used a size adjustment task, 
and the results were equivocal. However, clear results were obtained using a two-interval forced choice task, in 
which each texform was presented at the preferred visual size of its corresponding original image, and a visual 
size slightly bigger or smaller. Observers consistently selected the texform presented at the canonical visual size 
as the more aesthetically pleasing one. An additional control experiment ruled out alternative explanations 
related to size priming effects. These results suggest that the preferred visual size of an object depends not only 
on explicit knowledge of its real-world size, but also can be evoked by mid-level visual features that systemat
ically covary with an object’s real-world size.   

1. Introduction 

One of the most frequent everyday activities we engage in is 
inspecting objects. When we detect a bird in a tree, find a box of snacks 
lying deep in the fridge, or spot a product in an aisle of a shopping mall, 
we gather more information about the object by getting closer to it and 
stopping at a proper distance to look at it. This idea that each object has 
an optimal viewing distance, and that perception draws us to move our 
bodies to the distance that balances between deficiency on one hand (too 
far away) and excess on the other (too close), has been highlighted by 
philosophers of perception (Kelly, 2010; Merleau-Ponty, 1962). By 
moving closer to or farther from an object, the observer can adjust the 
visual size that the object subtends in their visual field. Indeed, research 
has found that given a picture of an object, there is a systematic, or 
“canonical”, visual size at which the object “looks best” in, and, 

curiously, this visual size is linked to the physical size of the object: 
When viewing items with a bigger physical size (e.g., a car), we prefer to 
view them at a bigger visual size; and when viewing items with a smaller 
physical size (e.g., a cup), we prefer a smaller visual size (Konkle & 
Oliva, 2011; Linsen, Leyssen, Sammartino, & Palmer, 2011; see also 
Eckstein, Koehler, Welbourne, & Akbas, 2017). 

1.1. Knowledge of physical sizes 

What is the nature of these physical size representations that drive 
the systematic canonical visual sizes? A likely candidate is the rich real- 
world size knowledge we eagerly pick up as we experience the world, 
evident in toddlers and even infants (e.g., Granrud, Haake, & Yonas, 
1985; Long, Moher, Carey, & Konkle, 2019a, 2019b; Sensoy, Culham, & 
Schwarzer, 2020; Yonas, Pettersen, & Granrud, 1982). We can clearly 
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learn the physical sizes of objects from our own past sensory experience 
(e.g., the size of our favorite toy from childhood) and build this 
knowledge further by incorporating semantic knowledge (e.g., even if 
you have never seen a “ranchu” or a picture of one, if you learn that it is a 
kind of goldfish, you might then infer that it is roughly the size of a 
typical pet goldfish; see Chen, Lu, & Holyoak, 2014). Further, size 
knowledge can be completely abstracted from direct sensory experience; 
for example, we can represent and reason about the physical size of an 
atom, the earth, or even of a unicorn. Interestingly, this knowledge of 
objects’ real-world sizes seems to influence how we spatially allocate 
our visual attention (Collegio, Nah, Scotti, & Shomstein, 2019), 
demonstrating an example of interaction between size knowledge and 
other aspects of cognition. Thus, one possible account of canonical vi
sual size is that it arises as a consequence of our abstract physical size 
knowledge. 

1.2. Perception of physical sizes 

Interestingly, along with the rich size knowledge we have, our visual 
systems seem to maintain perceptual representations that distinguish 
objects of different physical sizes as well. This point is revealed behav
iorally with several different methods: Visually searching for a picture of 
a big object (e.g., a building) among an array of pictures of small objects 
(e.g., a flashlight, a cap, etc.) is faster than when searching for the same 
picture of the big object among other pictures of big objects (e.g., a bed, 
a boat, etc.; note that the visual size of all the items in the array is the 
same; Long, Konkle, Cohen, & Alvarez, 2016; Long et al., 2019a). This 
result indicates that there are systematic perceptual differences between 
big and small objects (as classes), that can be used to speed up visual 
search processes. For example, bigger objects tend to be boxier with 
higher spatial frequency, and small objects tend to be curvier and 
smoother (Konkle, 2011; Long et al., 2016). 

An even stronger case for these systematic perceptual differences 
among objects of different physical sizes comes from a line of work using 
“texform images”—these are distorted images synthesized from images 
of recognizable objects, which critically retain some perceptual texture 
and coarse contour, while “knocking out” the object identity (See Fig. 1; 
Long et al., 2016; Deza, Chen, Long, & Konkle, 2019). The facilitated 
visual search for big among small objects (and vice versa) persists with 
texform images (Long et al., 2016): That is, texforms of big objects were 
faster to find among texforms of small objects than among texforms of 
big objects. These results further support the claim that there are sys
tematic perceptual differences in the shape and texture of objects of 
different real-world sizes. 

These systematic perceptual differences between big and small ob
jects not only influence visual search but also are powerful enough to 
interfere with even simple perceptual judgments about what image is 
bigger or smaller on the screen, a task that does not require any access to 
the identity or the real-world size of the objects. That is, people are faster 
to select the visually smaller of two objects on the screen if it is in fact 
smaller in the real world (Konkle & Oliva, 2011). Critically, the same 
effect was found using texforms (Long et al., 2019b; Long & Konkle, 
2017): For example, people were faster to pick the visually smaller of 
two unrecognizable texforms, when the visually smaller texform was 
generated from a small object (e.g., key) than when the visually smaller 
texform was generated from a big object (e.g., piano). Thus, perceptual 
feature differences between big and small objects are sufficient to 
automatically influence visual size judgments. Finally, complementing 
these behavioral signatures, there is also evidence for different visual 
cortex sensitivity to these perceptual features: Different regions along 
the ventral stream respond more to big object texforms than small object 
texforms (and vice versa), with highly similar large-scale ventral stream 
topography as evoked when viewing recognizable objects with big vs 
small real-world sizes (Long, Yu, & Konkle, 2018). 

Taken together, these studies prompt another possible account for 
canonical visual size: The preferred visual size of an object may arise as a 

consequence of perceptual processing (rather than explicit recognition 
and reasoning), where certain kinds of visual features are processed 
more effectively in certain visual sizes than other visual features. While 
it is still under active exploration what exactly these visual features 
existing in texform images are, it is nevertheless clear from the behav
ioral patterns discussed above that such features can drive real-world 
size effects at the level of perceptual processing. As such, it is possible 
that one of the underlying causes of the systematic canonical visual sizes 
are in fact perceptual in nature (which is not mutually exclusive with a 
role for knowledge in size preferences as well). Our goal in this study is 
to explore this possibility. 

1.3. The current study: perceptual contributions to canonical size? 

Here, we tested if the canonical visual size of objects can be observed 
even when the images of objects have been “texformed”, so they are no 
longer recognizable, preventing explicit access to the objects’ identities 
and associated real-world size knowledge. We first asked in Experiment 
1 if there are systematic canonical visual sizes for texform images, using 
a method of adjustment, which, to foreshadow, yielded equivocal re
sults. We then turned to a forced-choice paradigm in Experiment 2a and 
its replication Experiment 2b, which showed clear and replicable results. 
In Experiment 3, we once again replicated the main results and ruled out 
alternative explanations. 

2. Experiment 1: method of adjustment 

In the first experiment, we examined whether intact and texform 
images have systematic canonical visual sizes using a method of 
adjustment task: Subjects were asked to rescale an image presented on 
the screen until it “looks best”. The key questions are: First, do we 
replicate Konkle and Oliva (2011), showing consistent preferred visual 
sizes for intact recognizable objects related to their real-world size? And, 
second, do texforms show consistent preferred visual sizes, related to 
real-world size, corresponding to the original images? 

2.1. Method 

2.1.1. Participants 
Fifteen naive subjects (6 females, 8 males, and 1 other gender; all 

with normal or corrected-to-normal visual acuity) from the Harvard 
University community completed individual 60-min sessions in ex
change for a small monetary payment or a course credit. This sample size 
was preregistered1 and was fixed to be identical across all experiments 
reported here. Four subjects were replaced based on predetermined 
exclusion criteria reported in Section 2.1.5 Exclusions. 

2.1.2. Apparatus 
The experiment was conducted with custom software written in 

Python with the PsychoPy libraries (Peirce et al., 2019). The subjects sat 
approximately 60 cm without restraint from an iMac computer (with a 
viewport of 47.6 cm × 26.7 cm and effective resolution of 2048px ×
1152px). 

2.1.3. Stimuli 
The final stimulus set consisted of 40 original recognizable images 

and 40 corresponding texforms images (depicting 10 big animals, 10 big 
objects, 10 small animals, and 10 small objects). To generate this 
curated and controlled set of images, we used the following procedure. 

First, a superset of 180 recognizable images were collected from 
various sources including stimuli from previous works (Konkle & 

1 For preregistration of Experiment 1, visit https://aspredicted.org/at3v7.pd 
f. The only deviation of experiment details from the preregistration is that the 
block order was not counter-balanced but alternated before subject exclusions. 
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Caramazza, 2013; Konkle & Oliva, 2012; Long et al., 2018) and Google 
images—consisting of 90 big items (big enough to support an adult 
human being) and 90 small items (small enough to be held by one hand), 
with an equal balance of animals and man-made objects. These images 
went through preprocessing to (a) remove the backgrounds, (b) crop to 
the smallest square that envelops the items, (c) resize to 512px × 512px, 
(d) convert to grayscale, (e) equalize their luminance and luminance 
histograms, and (f) place in the center of a gray background of 640px ×
640px. The details of the preprocessing can be found in Appendix A. The 
resulting images are referred to as intact images (see Fig. 1). 

Next, the corresponding texform images (see Fig. 1) were generated 
from these intact images following the method detailed in Deza et al. 
(2019), which is a variation and extension of the method used in Long 
et al. (2018). To overview, each texform image was synthesized from a 
random noise image seed, coerced to match the first and second order 
image statistics of each intact input image (following Freeman & 
Simoncelli, 2011). The size of the pooling windows over which these 
textural image statistics were computed reflects a peripheral placement 
in a simulated visual field (i.e., with small enough pooling windows with 
respect to the visual size of the depicted object to retain some coarse 
form information, but large enough with respect to the visual size of the 
depicted object to texturize the content, usually beyond recognition). 
Note this slightly modified texform algorithm enabled us to synthesize 
higher resolution texform images (640 px × 640 px) than in Long et al. 
(2018) (180 px × 180 px), for more on the method see Deza et al. (2019). 

Finally, following the generation of these candidate texform images, 
we conducted an online pretest to test for texform recognizability (for 
details of the pretest, see Appendix B). Based on these results, we 
selected a final set of 40 pairs of intact and texform images (20 big items 
and 20 small items, half depicting animals and half depicting inanimate 
objects). The texform images were unrecognizable for at least 15 out of 
18 pretest observers at the basic level (e.g., “dog” rather than “animal” 
or “huskie”; Rosch, Mervis, Gray, Johnson, & Boyes-Braem, 1976). This 
criterion was still a relatively low cut-off, so our experiment included a 
recognition post-test and excluded for each subject the images they 
recognized from the analysis. 

2.1.4. Procedure and design 
Each trial began with a 400 ms blank gray screen (matching the 

background color of all the images) followed by the presentation of a 
single centered image. The subjects were instructed to move the invis
ible cursor up and down to make size adjustments to the image (“adjust 
the size of the picture until it looks best to you…make the image the size 
you find most visually pleasing”). Moving the cursor up increased the 
visual size and moving it down decreased the visual size (see Fig. 2a). 
The allowed size ranged from 5px × 5px to 1552px × 1552px. All im
ages were initially presented at the medium size of 778px × 778px. The 
subjects made as many adjustments as they liked, to make the image the 
size they found “most visually pleasing”. They then clicked the mouse to 
submit their responses. (Mouse clicks within 300 ms of the onset of the 

Fig. 1. Example of intact and texform images from Experiment 1, 2a, and 2b.  
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images were recorded but ignored.) 
In each “intact block”, all 40 intact images (2 real-world sizes × 20 

items) were each presented once in a block in randomized order; and in 
each “texform block” the 40 texform images were presented in different 
randomized order. Five subjects completed four intact blocks followed 
by four texform blocks, and 10 subjects completed four texform blocks 
followed by four intact blocks. All completed a total of 320 trials. The 
block order alternated between subject before subject exclusions (data 
from all but one subject showed the same pattern in the critical analysis 
reported below, regardless of the block order). Subjects took three self- 
paced breaks when they completed 25%, 50%, and 75% of the experi
ment. Before the main experimental trials, subjects completed four 
practice trials with images (one big object, one big animal, one small 
object, one small animal, either all intact or all texform, depending on 
the first block type); these images never appeared in the main experi
mental trials. The subjects were not told about the nature of the texform 
images. 

After the adjustment task, subjects completed a recognition test on 
all texforms to assess whether these specific subjects recognized the 
texform images (though note that these subjects also saw the corre
sponding intact images in the same setting). They were told that the 
texform images they saw were “made from images of objects by dis
torting the images while keeping their textures”. They then viewed all 
texform images one by one again and typed in with a keyboard what 
they thought was depicted in each image. 

2.1.5. Exclusions 
The responses from the recognition test were graded by the first 

author before looking at the adjustment data: To be conservative at 
estimating the unrecognizability of texform images, any response that 
named an object with a similar size and shape from the depicted object 
was considered correct. Any adjustment trials from stimuli with their 
texform version recognized in the recognition test were discarded, along 
with adjustment trials with mouse clicks within 300 ms of the onset of 
the images. Three subjects had more than 20% of trials discarded and 
thus were excluded and replaced with new subjects to meet the targeted 
sample size. 

Next, we tested the consistency of the preferred visual sizes of the 
intact images since this is a necessary precondition for examining text
form feature contributions to this preferred visual size. To estimate the 
reliability of the preference, we computed the correlation between the 
selected sizes across the first half and the last half of trials for the intact, 
recognizable images. One subject was removed based on having low 
reliability (r’ < 0.5), and was replaced, yielding a final average reli
ability of the preferred visual sizes for intact images of r’ = 0.82 (SD =
0.15). Unlike the preregistered plan, we did not exclude subjects based 
on the reliability of the preferred visual size of texforms because the 
reliabilities were generally very low (r’ = 0.21, SD = 0.25). After subject 
replacements, the mean recognition rate was 7.3% (SD = 5.9%) and a 
total of 68 out of 4800 trials were discarded due to early mouse clicks. 

2.2. Results and discussion 

First, we examined whether, for intact recognizable objects, subjects 
consistently preferred visual sizes that were related to the real-world 
size of the depicted object. The results are shown in Fig. 2 (individual 
data for all experiments are shown in Appendix C). Overall, we found 
that people did show the signature preferences. Subjects preferred to 
view the big items at a bigger visual size (757px, SD = 268px) compared 
to small items (480px, SD = 180px; t(14) = 3.78, p = .002, Cohen’s d =
0.98; 14 out of 15 subjects, p = .002), regardless of whether the images 
depicted animals or inanimate objects (main effect of Animacy: F(1,14) 
= 0.94, p = .348, ŋp

2 = .063; interaction effect between Animacy and 
Size: F(1,14) = 3.45, p = .085, ŋp

2 = .198). Thus, these results are 
consistent with the canonical visual size effect (Konkle & Oliva, 2011). 

On the other hand, with the texform images, the reliability of the 

preferred sizes was quite low (r’ = 0.21, SD = 0.25), indicating subjects 
did not select similar visual sizes across repeated presentations of the 
same texform image. Further, we did not observe the signature prefer
ence where the big items were preferred at bigger visual sizes than small 
items (531 px, SD = 153, vs 530 px, SD = 160; t(14) = 0.07, p = .944, 
Cohen’s d = 0.02; 10 out of 15 subjects, p = .302). The 2 (big/small) × 2 
(intact/texform) ANOVA showed a significant main effect of size (F 
(1,14) = 14.92, p = .002, ηp

2 = .516), no main effect of intact/texform (F 
(1,14) = 2.9, p = .110, ηp

2 = .172), and a significant interaction effect (F 
(1,14) = 13.1, p = .003, ηp

2 = .483). Thus, the simple act of resizing until 
the texform image “looks best” did not yield consistent preferred visual 
sizes. 

While these results could indicate an actual lack of size preference for 
texform images, the unreliable responses may also be related to the 
nature of the adjustment task. For example, in facing the unfamiliar 
texform images, it is possible that subjects felt less confident in making a 
choice from the unlimited options given by an adjustment task, leading 
to a family of unconstrained strategies. We thus performed Experiment 
2a and 2b with a more rigorous psychophysical method to probe for the 
existence of visual size preferences in texform images. Additionally, the 
lack of effect in this adjustment task has one interpretive benefit—that 
is, it provides further support that the subjects are not systematically 
recognizing these texform images as something (if they were, the sizes 
would be consistent across repetitions). 

3. Experiment 2: forced-choice task 

Experiment 2a and 2b cut the number of preferred visual size options 
down from unlimited to only two, using a forced choice paradigm. That 
is, subjects could toggle between two options and selected the one that 
looked best. We conducted two versions of this experiment: In the first 
version, we created a larger stimulus set drawn from the same superset 
as reported in the experiment above. In the second version, intended as a 
replication experiment with some generalization, we changed the 
stimulus set again, in order to dovetail more closely with previous work, 
using a subset of the original texform images used by others (Long et al., 
2016; Long & Konkle, 2017; Long et al., 2018; Wang, Janini, & Konkle, 
2022; Grootswagers, Robinson, Shatek, & Carlson, 2019; see Fig. 1). 
These two versions of the experiment (Experiment 2a and 2b) were 
otherwise identical, except for the stimuli used and a few related details 
in their presentation. 

3.1. Method 

The experimental apparatus and general procedures were similar to 
Experiment 1, except as noted here. 

3.1.1. Participants 
Each experiment was completed by 15 naive subjects. (Experiment 

2a: 10 females, 5 males; Experiment 2b: 6 females, 9 males). Subjects 
were replaced based on preregistered2 exclusion criteria reported in 
Section 3.1.4 Exclusions (6 excluded and replaced in Experiment 2a; 1 
excluded and replaced in Experiment 2b). All experiments were 
approved by either the Harvard University or the UCLA Institutional 
Review Board. 

3.1.2. Stimuli 
In Experiment 2a, 50 pairs of intact and texform images were 

repicked from the superset of 180 processed images as described in 
Experiment 1. Half of the images depicted big items and half small items 
(with a balanced selection of animals and inanimate objects). Based on a 

2 For preregistration of Experiment 2a, visit https://aspredicted.org/pf87y.pd 
f. The only deviation of experiment details from the preregistration is that the 
block order was not counter-balanced but alternated before subject exclusions. 
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pilot study using the same adjustment task from Experiment 1, these 
images were selected to maximize the range of canonical visual sizes, 
while also maintaining a generally balanced set across real-world size 
and animacy (12 big and 13 small animals; 12 big and 13 small objects). 
The images were then scaled down to 440px × 440px, which is a lower 
resolution than in Experiment 1 (based on pilot studies, this design 
choice helped to ensure that the preferred sizes of intact images were 
well within the size of the screen). 

In Experiment 2b, 50 pairs of images were selected from the stimuli 
from Long et al. (2018), available online (https://konklab.fas.harvard. 
edu/). The main difference of these texforms is that they have a lower 
spatial resolution.3 The images were selected to include 25 animals and 
25 objects and maximize the range of canonical visual sizes based on a 
pretest, this resulted in 19 big items (8 big animals, 11 big objects) and 
31 small items (17 small animals, and 14 small objects). Note that, here 
the division of items into “big” and “small” is less relevant, as we can 
treat size here as a continuous variable. 

3.1.3. Procedure and design 
The subjects completed three tasks in order: (a) an adjustment task 

on intact images, to obtain a canonical visual size estimate for each item, 
(b) the main forced choice task, to select which of two visual sizes of the 
same image was more aesthetically pleasing, completed for both intact 
and texform images in different blocks, and (c) a post-test assessing 
recognition on the texform images. This procedure is depicted in Fig. 3a. 

3.1.3.1. Size adjustment task on intact images. As in Experiment 1, sub
jects moved the mouse to adjust the visual size of an image on the screen 
and clicked when the image “looked best.” This task was identical to the 
adjustment task in Experiment 1, except that it consisted of only four 
intact blocks of 50 trials, the allowed size ranged from 20px × 20px to 
2152px × 2152px, with images initially presented in 20px × 20px 
(Experiment 2a) or 1086px × 1086px (Experiment 2b), the click 
detection started earlier at 100 ms after the onset of the images, and 
there was only one practice trial for Experiment 2b. For each item, its 
canonical visual size for that subject was calculated by averaging the 
selected sizes from the repetitions, after excluding trials with a response 
time (RT) less than 300 ms and excluding items that had more than half 
of the four trials excluded. Only the items that yielded canonical visual 
size smaller than 871px × 871px (so that the images stayed well within 
the monitor’s size) entered the next task (with both the intact images 
and their corresponding texform images). Critically, these canonical 
visual sizes were used to set the choice options for the next task. 

3.1.3.2. Aesthetic two-interval forced choice task. On each trial, subjects 
viewed a single image and toggled between two sizes with a key press. 
They were asked to toggle to view both sizes as many times as they liked 
and decide which of the sizes “looks more aesthetically pleasing”. Un
beknownst to the subjects, one of the size options was the average ca
nonical visual size they picked for that item in the adjustment task, and 
the other was a 30% difference in the diagonal length (with each item 
presented with a visually bigger alternative option in one trial, and 
visually smaller alternative option in another trial; see Fig. 3a for 
example displays from Experiment 2a and 2b). Which size option was 
shown first in a trial was randomized. 

Subjects performed this task in separate blocks for intact and texform 
images. Critically, in the texform block, the visual sizes were based on 
the canonical visual sizes of the corresponding intact images. For both 

intact and texform blocks, we calculated the percentage of trials in 
which subjects picked the canonical visual size options as the key 
outcome measure. The block order alternated between subjects before 
subject exclusions (resulting in nine subjects completing the texform 
block first, and six completing intact block first in Experiment 2a; with 
seven completing the texform block first and eight completing the intact 
block first in Experiment 2b). 

3.1.3.3. Texform image recognition test. Finally, as subjects received 
extensive exposure to the intact images as well as the corresponding 
texforms, we next tested the recognizability of the texforms that were 
included in the forced choice task. The same procedure and grading as in 
Experiment 1 were performed, and the average texform image recog
nition rate was 24% (SD = 14%) for Experiment 2a and 56% (SD = 12%) 
for Experiment 2b. This difference in recognition rates was inherent to 
the different stimulus sets, and did not lead to qualitative differences in 
the results. Below we report analyses from unrecognized and recognized 
items separately. 

3.1.4. Exclusions 
The following preregistered exclusion criteria were applied: (a) 

forced choice trials with RT less than 300 ms, (b) forced-choice trials 
without any toggling (i.e., the subject picked the first option without 
viewing the second option), (c) subjects with more than or equal to 5% 
trials excluded in either the adjustment or the forced choice task 
(Experiment 1a N = 1; Experiment 1b N = 1), (d) subjects who had less 
than 12 items (i.e., 12 intact and 12 texform images)4 entered into the 
forced choice task (Experiment 1a N = 1), and (e) subjects who had by- 
item split-half reliability lower than 0.5 in the adjustment task (Exper
iment 1a N = 4). As noted above, excluded subjects were replaced to 
achieve the pre-registered N = 15 for each experiment. 

3.1.5. Analysis 
Our analysis plan followed this rationale: If explicit (non-perceptual) 

size knowledge is required for viewing size preference to arise, then we 
should not see similar canonical viewing sizes for intact images and 
unrecognized texform images. Thus, we first considered only the forced- 
choice trials that the texforms were not subsequently recognized during 
the recognition test, and calculated the percentage of trials in which 
subjects chose the canonical visual size rather than the modulated size. 
Then, we simply compared these percentages with the chance level of 
50% with a one-sample t-test. We did this analysis separately for the 
intact images and the texform images. 

For exploratory purposes, we also performed the same analyses on 
the recognized texform images for the readers’ information. These 
exploratory analyses were not part of our preregistered analysis plan, 
and our experiment was not designed for them: We have specifically 
generated texform images to be relatively unrecognizable for our main 
analyses, which necessarily led to low numbers of recognizable texform 
images. We nevertheless reported these analyses in case they may 
inform future studies. None of our major conclusions depend on the 
results of these analyses. 

3.2. Results and discussion 

3.2.1. Main analyses with unrecognized items 
We first analyzed the visual preference data from the forced choice 

task, but only including trials in which the texforms were not subse
quently recognized during the recognition test. (This included an 
average of 76.9% of the forced-choice trials in Experiment 2a, 43.9% in 

3 In their generation procedure the intact images were first scaled down to 
180px × 180px and embedded in a 640px × 640px gray background. This 
image served as the input to generate the texform. After the synthesis, 192px ×
192px area centered at where the input images were embedded was cropped 
and rescaled back to 440px × 440px. Finally, the four edges were gradually 
faded into the background color. 

4 The preregistration specified 30 items as the criterion; however, this ended 
up being too strict and excluded most of the subjects. We thus decided on 12 
items in Experiment 2a and replicated the results in Experiment 2b with this 
new criterion. 
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B. Results from unrecognized items
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C. Results from recognized items
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Fig. 3. (a) Subjects completed 3 tasks in order in Experiment 2a and 2b: Size adjustment task on intact images, followed by an aesthetic 2-interval forced choice task, 
followed by a texform image recognition test. (b) Visual size preferences for the set of images whose texforms were not subsequently recognized, for Experiment 2a 
(left) and 2b (right). The y-axis shows the percentage of trials the subjects chose the canonical visual size (chance = 50%), plotted separately for intact and texform 
images. Error bars reflect 95% confidence intervals. (c) The plots are the same as in (b), but for the subset of items for which the texforms were subse
quently recognized. 
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Experiment 2b.) The percent of trials in which subjects chose the ca
nonical visual size rather than modulated size was plotted for both intact 
and texform blocks in Fig. 3b. 

Inspection of the figure reveals two main results, present in both 
experiments. First, subjects chose the canonical size over the alternative 
above chance, for intact images and, critically, also for texform images. 
Second, the canonical visual size preference was stronger in intact than 
in texform images. Indeed, one-sample t-tests confirmed all blocks were 
above the chance level of 50% (Experiment 2a: intact block, 71%, SD =
7%, t(14) = 10.90, p < .001, Cohen’s d = 2.81, 15 out of 15 subjects, p <
.001; texform block, 61%, SD = 9%, t(14) = 4.38, p = .001, Cohen’s d =
1.12, 13 out of 15 subjects, p = .007; Experiment 2b: intact block, 73%, 
SD = 9%, t(14) = 9.24, p < .001, Cohen’s d = 2.38, 14 out of 15 subjects, 
p = .001; texform block, 60%, SD = 10%, t(14) = 4.19, p = .001, Cohen’s 
d = 1.08, 12 out of 15 subjects, p = .035), and the differences between 
intact and texform blocks were also significant (Experiment 2a: t(14) =
3.16, p = .007, Cohen’s d = 0.82, 13 out of 15 subjects, p = .007; 
Experiment 2b: t(14) = 3.81, p = .002, Cohen’s d = 0.98, 12 out of 15 
subjects, p = .035).5 We also conducted a 2 × 2 ANOVA (with Experi
ment 2a/2b as a between subject factor and texform/intact block as a 
within-subject factor), which was not pre-registered, to provide addi
tional information for interested readers. We found a significant main 
effect of block type (F(1,27) = 24.2, p < .001, ηp

2 = .472), no main effect 
of experiment (F(1,27) = 0.9, p = .339, ηp

2 = .034), and no interaction 
effect (F(1,27) = 0.1, p = .756, ηp

2 = .004). 
These findings confirmed that subjects preferred to view texform 

images in the canonical visual size of their original versions compared to 
bigger or smaller alternatives. Thus, visual size preferences partially 
persist after object recognition is disrupted, providing evidence that 
mid-level visual features contribute to the phenomenon of canonical 
visual size. However, at the same time, the visual size preference was 
still stronger in intact images. What may explain this difference? One 
possibility is that the difference still stemmed from the visual features: 
While texform images were made to be unrecognizable but preserve 
visual features, it is impossible to preserve all visual features. Among 
these visual features that are only available in the intact images, some 
may contribute to the viewing size preference through perceptual 
routes. Another possibility is that the recognition and thus access to 
object knowledge strengthen the viewing size preference in intact im
ages. The following exploratory analyses with recognized items help 
shed light on these possibilities. 

3.2.2. Exploratory analyses with recognized items 
The same analyses were performed on trials with recognized items 

(see Fig. 3c). Inspection of the figure suggested the same three trends in 
both experiments: First, subjects chose canonical size over the alterna
tive above chance level with both intact and texform images. Second, 
canonical size preference was stronger in intact than in texform images. 
Third, the data patterns were almost numerically identical to the un
recognized trials. One-sample t-tests confirmed the first impression that 
all blocks was above the chance level of 50% (Experiment 2a: intact 

block, 70%, SD = 14%, t(14) = 5.63, p < .001, Cohen’s d = 1.45, 12 out 
of 15 subjects, p = .035; texform block, 62%, SD = 17%, t(14) = 2.75, p 
= .016, Cohen’s d = 0.71, 10 out of 15 subjects, p = .302; Experiment 2b: 
intact block, 72%, SD = 10%, t(14) = 8.60, p < .001, Cohen’s d = 2.22, 
15 out of 15 subjects, p < .001; texform block, 61%, SD = 7%, t(14) =
5.99, p < .001, Cohen’s d = 1.55, 13 out of 15 subjects, p = .007). There 
was also a difference between intact and texform blocks, but this dif
ference was only significant in Experiment 2b (Experiment 2a: t(14) =
1.37, p = .193, Cohen’s d = 0.35, 8 out of 15 subjects, p > .999; 
Experiment 2b: t(14) = 3.07, p = .008, Cohen’s d = 0.79, 11 out of 15 
subjects, p = .118). This is likely due to the lower recognition rate in 
Experiment 2a than in 2b (24% vs. 56%), leading to fewer trials entering 
the analysis and thus higher variances (SDdiff = 23% vs. SDdiff = 12%). 
With another 2 × 2 ANOVA with experiment and texform/intact block 
types as factors, we found a significant main effect of block type (F(1,27) 
= 6.5, p = .016, ηp

2 = .195), no main effect of experiment (F(1,27) = 0.4, 
p = .526, ηp

2 = .015), and no interaction effect (F(1,27) < 0.1, p = .831, 
ηp

2 = .002). 
While remembering to take cautions on the tentative nature of these 

observations, the almost identical numerical patterns found in unrec
ognized and recognized images suggests that explicit identity and/or 
size knowledge access may not be a major factor in the effects found 
here. Texform images still showed weaker canonical visual size prefer
ences than intact objects, even when the texforms were subsequently 
recognized (and thus could have potentially allowed access to physical 
size knowledge during the aesthetic choice task). These results provide 
additional support that these consistent visual size preferences for tex
form images are driven by their visual features. 

4. Experiment 3: priming control 

While the results from the last experiments were encouraging, there 
remains an alternative explanation to the above-chance performances 
on the texform choice task: It is possible that when subjects were 
selecting which of the two sized-texform views looked best, the tendency 
to pick the canonical view that matched with the intact item was 
induced by priming. That is, perhaps participants were remembering 
(either implicitly or explicitly) the pairing of adjusted sizes and image 
features when selecting the preferred views of intact images, in turn 
priming their choices in the texform choice task. Thus, to understand the 
degree to which priming could explain these results, here we designed a 
task to directly rely on priming to explore whether this mechanism could 
account for the consistent texform viewing preferences. 

Subjects participated in one of two task conditions, in a between- 
subjects design: The aesthetic task and the priming task. The aesthetic 
task was a replication of Experiment 2a, while the priming task 
measured the priming effect directly by not asking for aesthetic judg
ments but instead asking subjects to pick the sizes that were paired with 
the images in the adjustment task. We compared the two task conditions 
to see if a priming effect can explain the canonical viewing size prefer
ences in texform images observed above. Additionally, we also only 
presented texform images during the visual choice blocks (removing 
intact images in this phase of the experiment) to ensure that those extra 
exposures to the intact images were not critical to our findings. 

4.1. Method 

The experimental apparatus and general procedures were identical 
to Experiment 2a, except as noted. 

4.1.1. Participants 
Each task condition was completed by 15 naive UCLA undergraduate 

students (all 30 subjects happened to be female). Subjects were replaced 
based on exclusion criteria reported in Section 4.1.4 Exclusions (three 
subjects in the aesthetic task condition and three subjects in the priming 
task condition were excluded and replaced). 

5 These analyses were done collapsing the animal/object factor as planned 
and preregistered. The results remained the same if we analyzed the animals 
and the objects separately (Experiment 2a intact block, animals: 70%, SD =
10%, t(14) = 7.47, p < .001, Cohen’s d = 1.93, 14 out of 15 subjects, p = .001; 
objects: 72%, SD = 8%, t(14) = 10.28, p < .001, Cohen’s d = 2.65, 15 out of 15 
subjects, p < .001; texform block, animals: 60%, SD = 8%, t(14) = 4.80, p <
.001, Cohen’s d = 1.24, 12 out of 15 subjects, p = .035; objects: 61%, SD =
13%, t(14) = 3.52, p = .003, Cohen’s d = 0.91, 12 out of 15 subjects, p = .035; 
Experiment 2b intact block, animals: 68%, SD = 13%, t(14) = 5.31, p < .001, 
Cohen’s d = 1.37, 13 out of 15 subjects, p = .007; objects: 77%, SD = 12%, t 
(14) = 9.05, p < .001, Cohen’s d = 2.34, 14 out of 15 subjects, p = .001; 
texform block, animals: 60%, SD = 12%, t(14) = 3.00, p = .009, Cohen’s d =
0.78, 9 out of 15 subjects, p = .607; objects: 60%, SD = 10%, t(14) = 3.81, p =
.002, Cohen’s d = 0.98, 11 out of 15 subjects, p = .118). 
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4.1.2. Apparatus 
The subjects sat approximately 60 cm without restraint from a Dell 

computer (with a viewport of 41.0 cm × 31.0 cm and effective resolution 
of 1600px × 1200px. 

4.1.3. Procedure and design 

4.1.3.1. Aesthetic task condition. The same three phases from Experi
ment 2a were performed with slight adjustments to accommodate the 
new apparatus: For the size adjustment task on intact images, the 
allowed size ranged from 20px × 20px to 2200px × 2200px, with im
ages initially presented in 20px × 20px. Only the items that yielded 
canonical visual size smaller than 908px × 908px (so that the images 
stayed well within the monitor’s size) entered the next task. For the two- 
interval forced choice task, subjects only performed this task on texform 
images. Each texform image were tested four times, with two trials 
showing the 30% bigger alternative and two trials showing the 30% 
smaller alternative, with order of size option in two intervals counter
balanced. For the texform image recognition test, the average recogni
tion rate was 16% (SD = 10%). 

4.1.3.2. Priming task condition. The three phases of the experiment were 
similar to the aesthetic task condition with the following critical dif
ferences. First, during the size adjustment task on intact images, subjects 
were asked to adjust the image to the size of a box (10px red border) on 
the screen (rather than the best-looking size; “adjust the size of the 
picture until the picture fit right into the square…adjust the picture to 
the largest size that still fits in the box”). The sizes of the box for each 
image were yoked to the canonical size selected by subjects in the 
aesthetic task condition. For example, we took the canonical sizes picked 
in the adjustment task by Subject #1 in the aesthetic task condition, 
randomized the pairing between canonical sizes and the images, and had 
Subject #1 in the priming task condition adjust the images to the new 
paired sizes (indicated by the box size). The motivation here is to allow 
participants to (explicitly or implicitly) learn an association between an 
intact item and a visual size that is free of aesthetic biases. This way, the 
subsequent choice task will reflect the strength of priming effect rather 
than any aesthetic preferences. 

There were four practice trials, with the box size set to the median of 
all sizes in the formal trials. Because there was no way to show a box 
larger than the screen, for canonical sizes bigger than the size limit 
imposed in the aesthetic task condition, the box was presented in the 
average size of all sizes instead. (Note that these trials were merely fillers 
to equate the subjects’ experience between the two conditions. These 
stimuli were not included in the two-interval forced-choice task as in the 
aesthetic task condition.) Only when the subjects adjusted the image to 
the correct size (within 5% error margin), the box turned green and 
mouse clicks were allowed for submitting the response. 

Next, for the two-interval forced choice task, subjects were asked to 
view the texforms in two different sizes, and chose the size that their 
intact counterparts were adjusted to in the adjustment task (“Your job is 
to look at both of the displays of the same picture in different sizes, and 
choose the size that corresponds to the size its undistorted version was 
adjusted to in the first part”). Each subject was tested on texforms 
retained for the corresponding subject in the aesthetic task condition. 

Finally, participants completed the same texform image recognition 
test, the average recognition rate was 19% (SD = 14%). 

4.1.4. Exclusions 
The following exclusion criteria were applied: (a) forced choice trials 

with RT less than 300 ms, (b) forced-choice trial without any toggling (i. 
e., the subject picked the first option without viewing the second op
tion), (c) subjects with more than or equal to 5% trials excluded in either 
the adjustment or the forced choice task (Priming N = 2), (d) subjects 
who had less than 12 items entered into the forced choice task 

(Aesthetics N = 3), and (e) an experimenter error resulting in running a 
repeating subject (Priming N = 1). As noted above, excluded subjects 
were replaced to achieve N = 15 for each task condition. 

4.1.5. Analysis 
The same main and exploratory analyses from Experiment 2a and 2b 

were applied to both the aesthetic and priming task conditions, except 
for two differences: First, there were no intact images tested here. Sec
ond, the t-tests used to compare the results from two task conditions 
were two-sample t-tests because of the between-subject design. Again, 
none of our conclusions rely on the results of the exploratory analyses. 

4.2. Results and discussion 

4.2.1. Main analyses with unrecognized items 
We first analyzed the visual preference data from the forced choice 

task, but only including trials in which the texforms were not subse
quently recognized during the recognition test. (This included 84.4% of 
the forced-choice trials in the aesthetic task condition, 81.4% in the 
priming task condition.) The percent of trials in which subjects chose the 
canonical visual size rather than alternative size was plotted in Fig. 4. 

Inspection of the figure reveals two patterns: First, subjects chose the 
canonical size over the alternative above chance in both the aesthetic 
and priming task conditions. Second, subjects in the aesthetic task 
condition picked the canonical sizes more readily than subjects in the 
priming task condition. One-sample t-tests confirmed the first impres
sion: Both conditions were above the chance level of 50% (Aesthetic: 
66.7%, SD = 8.1%, t(14) = 7.97, p < .001, Cohen’s d = 2.06, 15 out of 15 
subjects, p < .001; Priming: 60.7%, SD = 5.6%, t(14) = 7.38, p < .001, 
Cohen’s d = 1.90, 15 out of 15 subjects, p < .001). Critically, the dif
ference between conditions were significant (t(28) = 2.35, p = .026, 
Cohen’s d = 0.86). These findings confirmed that (a) subjects preferred 
to view texform images in the canonical visual size of their original 
versions compared to bigger or smaller alternatives, replicating Exper
iment 2a and 2b (observed from the aesthetic task condition), (b) part of 
this effect can be attributed to a priming effect (demonstrated in the 
priming task condition), but most importantly, (c) the priming effect did 
not fully explain the effect in the aesthetic task condition. Thus, over and 
beyond a priming effect from size pairing exposure in the adjustment 
task, visual size preference persists after object recognition is disrupted. 
This strengthened the evidence that mid-level visual features contribute 
to the phenomenon of canonical visual size. 

4.2.2. Exploratory analyses with recognized items 
The same exploratory analyses were performed on trials with 

recognized items (see Fig. 4. Inspection of the figure suggested a clear 
pattern: Subjects chose canonical size over the alternative above the 
chance level (Aesthetic: 66.3%, SD = 14.1%, t(13) = 4.32, p = .001, 
Cohen’s d = 1.16, 12 out of 14 subjects, p = .013, one subject did not 
recognize any texform; Priming: 61.8%, SD = 14.3%, t(14) = 3.19, p =
.007, Cohen’s d = 0.82, 9 out of 15 subjects, p = .607). However, there 
was no difference between the two conditions (t(27) = 0.86, p = .398, 
Cohen’s d = 0.32), which is likely due to the low recognition rate and 
thus high variances (SDpooled = 14.2%). Again, the results from unrec
ognized and recognized items were very similar (Aesthetics: MDiff =

0.6% (13.8%), t(13) = 0.16, p = .876, Cohen’s d = 0.04, excluding the 
subject who recognized none of the texforms; Priming: MDiff = 1.0% 
(15.7%), t(14) = 0.26, p = .801, Cohen’s d = 0.07), suggesting that 
explicit identity and/or size knowledge access is not a major factor in the 
effects found here. 

5. General discussion 

Our minds have at least two sources of information when it comes to 
representing the physical size of objects in the world: We can access 
knowledge about the objects’ size attributes from knowing what they are 
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(e.g., Chen et al., 2014), and we also perceive visual feature differences 
between objects of different sizes (e.g., Long et al., 2016). Here, we 
asked what kind of information is driving the systematic visual size 
preference, where we like to view big things big and small things small 
(Konkle & Oliva, 2011; Linsen et al., 2011). In three experiments, we 
first replicated the systematic visual size preferences for recognizable 
objects and found some evidence for the role of perceptual features in 
such preferences: While resizing texforms until they looked best did not 
show visual size preferences (Exp 1), we did find consistent preferences 
when given only two options (replicated across Exp 2a and 2b), which 
could not be fully explained away by priming mechanisms between 
intact and texform images (Exp 3). These results demonstrate that visual 
size preferences, instead of only stemming from knowledge of objects’ 
physical sizes, can also be evoked by the visual features that are pre
served in unrecognizable texforms. 

5.1. Mid-level visual features: what are they? 

Since the visual size preferences for texforms are systematic without 
object recognition, the information about the objects’ physical sizes 
must be coming from the visual features. What kind of visual features 
carry the information about an object’s physical size? While our ex
periments do not have direct evidence to pinpoint the responsible fea
tures, the use of texform images constrained the possibilities. First, the 
effects cannot be explained by color or global low-level visual statistics 
(e.g., luminance and contrast), since the images were converted to 
grayscale and equalized across luminance and luminance histograms 
(see Appendix A). Second, the effects do not rely on accurate identifi
cation of the texform images, and thus cannot be attributed to explicit 
semantic information regarding the particular objects. These bounds 
leave a wide range of “mid-level” features in between. In our case, 
texform images would presumably be on the lower-end of this range, as 
these were created by matching the first- and second-order statistics of 
intact images within a series of receptive field-like pooling windows 
(Freeman & Simoncelli, 2011; Long et al., 2016), the global forms 
(rough spatial envelopes for the whole objects and their parts) are pre
served along with local corners, junctions, and contours, but clear outer 
contours and three-dimensionality are less preserved. 

One proposed mid-level visual feature dimension, which co-varies 
with the real-world size of objects, is related to perceived curvature 
(Konkle, 2011; Long et al., 2016). For example, on a 5-point likert scale 
from “very curvy” to “very boxy”, people consistently judged small 
objects to be curvier than big objects in both intact and texform images 
(Long et al., 2016). This subjective curvature dimension also predicts the 
structure of ventral visual system’s responses to objects that vary in real- 

world sizes (Long et al., 2018; see also Srihasam, Vincent, & Livingstone, 
2014; Yue, Robert, & Ungerleider, 2020). Curvature computations more 
generally have been proposed to emerge from even earlier computations 
linked to spatial frequency and end-stopping that vary from the center to 
the periphery (e.g., Ponce, Hartmann, & Livingstone, 2017). However, 
note that even “curvature” itself is a multi-level construct with a more 
primitive perceptual instantiation based on constructing adjacent ori
entations in a retinotopic format (e.g., Yue et al., 2020), to a more 3- 
dimensional representation of curvature in an object-centered format 
(e.g., Srinath et al., 2021). Understanding these mid-level features, both 
visualizing them and developing a vocabulary to describe them, is still 
an active front of research, with potentially promising new in-roads 
through an analysis of the feature tuning across different layers of 
deep neural networks (e.g., Bau et al., 2020; Olah, Mordvintsev, & 
Schubert, 2017). 

Finally, there is an intriguing link between curvature and overall 
aesthetic experience, where curvier things generally give rise to a rela
tively positive aesthetic experiences (Bar & Neta, 2006; Cotter, Silvia, 
Bertamini, Palumbo, & Vartanian, 2017; Palumbo et al., 2020; Varta
nian et al., 2013; but see also, Maezawa, Tanda, & Kawahara, 2020).6 

Here we are speculating that feature variation along a dimension from 
curvy-to-boxy is systematically linked to preferences for smaller-to- 
larger visual sizes. Exactly how curviness and general aesthetic experi
ence are related to visual size preferences remains an open empirical 
question. 

5.2. Size knowledge’s role in aesthetics? 

While we showed that pure perceptual processes contribute to ca
nonical visual size preferences, we do not mean to imply that these 
solely determine canonical visual sizes. It is likely that knowledge of 
physical sizes still plays a (potentially substantial) role in size preference 
in other contexts. In fact, telling people that objects they were viewing 
were “toys” (thus were physically small) reduced the canonical visual 
sizes by more than 50% (Konkle & Oliva, 2011, Experiment 4). Our 
results from Experiment 1 may also imply effects of recognition and 
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Fig. 4. Visual size preferences for unrecognized (left) and recognized (right) items for Experiment 3. The y-axis shows the percentage of trials the subjects chose the 
canonical visual size (chance = 50%), plotted separately for the group of subjects competing the aesthetic task condition, and the group of subjects completing the 
priming task condition. Error bars reflect 95% confidence intervals. 

6 The general aesthetic preference for curvatures in abstract shapes, objects, 
and interior designs have been well established in the studies cited here and 
beyond. However, it is important to distinguish the general preference from the 
potential role of curviness in the present context. Liking curvatures itself cannot 
explain the viewing size preferences, as we would only predict a general pref
erence toward smaller objects that contain more curvy features regardless of 
viewing sizes. 
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knowledge access on visual size judgments, as subjects showed clear 
reliable viewing size preferences with intact images. (However, note 
that it is theoretically possible that these visual size preferences for 
intact objects observed in an adjustment task are still related to under
lying perceptual differences, just those that are not retained in texform 
images). Size knowledge is also known to influence aesthetic experience 
in a very different way—through expectations and pleasant surprises. 
Famously, artists (e.g., Claes Oldenburg) created humongous statues of 
everyday objects, which induced aesthetic experience presumably 
through challenging our expectations (e.g., Van de Cruys & Wagemans, 
2011). These kinds of aesthetic experiences have been argued to differ in 
intensity (and maybe in nature as well) from those that we may rely on 
to pick out a canonical visual size that simply “looks good” (e.g., for a 
discussion on these different kinds of aesthetic experiences, see Makin, 
2017; Brielmann & Pelli, 2017). 

Thus, we are not trying to imply that recognition and explicit 
knowledge of identity or real-world size information have no role in 
shaping visual size preferences. Instead, we aim to remove those factors, 
and show that they do not fully account for visual size preferences, 
revealing evidence for the role of perceptual mechanisms as well. 

5.3. The function of canonical visual sizes? 

Why do we have canonical visual sizes? Of course, our study does not 
provide a direct answer, but inspires some speculative ideas. One pos
sibility is that it is simply a byproduct of ontogenetic and/or phyloge
netic developments of visual systems: The visual features’ correlation 
with physical sizes gives rise to correlation with visual sizes in experi
ence as well. For example, if we tend to see small objects in smaller 
visual sizes, and small objects tend to be curvier, our visual systems may 
process visually small curvatures more fluently than visually big cur
vatures. And this perceptual fluency leads to a more positive experience 
when viewing physically small objects in small visual sizes (as in Reber, 
Schwarz, & Winkielman, 2004). In this way, the size preference itself 
may not have a particular function but is just an indication of the visual 
system’s tuning for features it commonly encounters. 

Another possibility is that canonical visual size is in fact functional. 
For example, it may guide us to seek some sort of optimal viewing dis
tances for each object (cf. Merleau-Ponty, 1962). A functional viewing 
distance might be one that minimizes the danger associated with getting 
close to unknown objects in the environment, yet close enough to gather 
information for appropriate actions. For example, if we are looking at an 
unknown object, our knowledge cannot guide us to interact with it in a 
proper distance, but our visual systems may use heuristics based on vi
sual features to induce aesthetic experience, which in turns motivate us 
to seek a proper viewing distance. 

Yet another possibility is that a functional viewing distance might be 
one that is linked to spatially varying sensitivity across the visual field. 
Being too far from an object prevents us from discerning important 
detailed features at sufficient resolution (e.g., different patterns on a leaf 
can help identify a poisonous plant). Being too close prevents us from 
seeing the global contours and summary statistics (e.g., how abundant a 
fruit tree is). The geometric relationship between visual size and viewing 
distance determines the proper viewing distance on this account, where 

smaller objects require a closer distance, and bigger objects demand a 
farther distance to project to appropriate visual sizes in the visual field.7 

More generally, a functional account argues that visual size preferences 
are there to assist active learning by motivating us to modulate the vi
sual inputs themselves, adding support to the idea that aesthetic expe
rience interacts with perception (e.g., Chen & Scholl, 2014; Chen, 
Colombatto, & Scholl, 2018; Forman, Chen, Scholl, & Alvarez, 2021;) 
and serves adaptive functions (e.g., Bar & Neta, 2006; Orians & Heer
wagen, 1992). 

The idea that aesthetic preferences are evolved to guide our action- 
perception cycle is closely related to a flavor of the predictive process
ing theory for affective values (e.g., Van de Cruys, 2017). This theory 
posits that positive aesthetic experiences arise from reducing either 
long-term or short-term prediction errors through information gain. 
Thus, viewing an object in the canonical viewing distance and canonical 
viewing size can maximize the information gain and subsequently 
reduce prediction errors, leading to positive experiences (for how this 
may work in a different phenomenon, see Van de Cruys et al., 2021). 
There are important bridges to be formed between these ideas of active 
sensing, optimal sensing, and aesthetic preferences: For example, un
derstanding the degree to which predictive processes are key to the 
formation of canonical visual sizes, and the degree to which these 
mechanisms operate over pure perceptual representation or require the 
semantic world models over which predictions are made. 
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Appendix A: Texform Generation Procedure 

 

Image collection 

Images of objects and animals were collected from various sources including stimuli 

from previous works (Long, Yu, & Konkle, 2018; Konkle & Caramazza, 2013; Konkle & Oliva, 

2012) and Google images. We first removed the background of the images, and then cropped it 

to the square bounding box of the objects or animals. Only images with resolution higher than 

512 px × 512 px after this step were included, and repetitions of objects from the same basic 

level category were replaced. This results in a total of 180 images, with 45 big objects, 45 small 

objects, 45 big animals, and 45 small animals.  

 

Normalization 

All images were resized to 512 px × 512 px and converted to grayscale using the Rec. 601 

Luma coding formula (red channel × 0.299 + green channel × 0.587 + blue channel × 0.114). 

They were then equalized across luminance and luminance histograms using the Spectrum, 

Histogram, and Intensity Normalization (SHINE) Toolbox (Willenbockel, Sadr, Fiset, Horne, 

Gosselin, & Tanaka, 2010). This step was done ignoring the background and without optimizing 

the structural similarity (SSIM) index (for details on the SSIM index, see Wang, Bovik, Sheikh, & 

Simoncelli, 2004). The images were then placed and centered on a gray (#828282) background of 

640 px × 640 px.  

 

Texform Generation 

The texform images were generated with an accelerated texform model (Deza, Chen, 

Long, & Konkle, 2019) modified from the method used in previous studies (e.g., Long et al., 

2018): The preprocessed intact images were placed in a simulated visual periphery as an input 

image to a metamer model (Freeman & Simoncelli, 2011). Then, a metamer image was 

synthesized by iteratively coercing random noises to match the texture statistics of the input 

image for every overlapping simulated receptive field, in addition to roughly matching the 

structure given a low-pass residual of the input image. The procedure was run for 50 iterations 

using a variant of gradient descent, producing a final texform image, which is essentially a 

peripheral metamer of the intact image. The same intact image was passed into the model twice 

to generate a left and a right texform corresponding to the left and right visual periphery. This 

resulted in 180 left texforms, and 180 right texforms in total. 
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Appendix B: Texform Images Recognizability Pretest 

 

To assess the recognizability of the texform images, we used a similar free-guessing 

method used in a previous study (Long, Yu, & Konkle, 2018). Thirty-six subjects from Amazon 

Mechanical Turk (Mturk) participated in the recognition task. They viewed the texform images 

and guessed what they were. (For a discussion of this pool’s nature and reliability, see Crump, 

McDonnell, & Gureckis, 2013.) All subjects were in the U.S., had an MTurk task approval rate of 

at least 95%, and had previously completed at least 50 MTurk tasks.) Half of the subjects were 

shown the 180 left texforms, and the other half seen the 180 right texforms. The texforms were 

shown one by one and the subjects simply typed their guesses in a textbox without time 

constraint. The subjects were instructed to always give one answer only (e.g., avoid answers like 

“A or B”, “I don’t know”, or leaving the box blank). 

Next, another 9 Mturk subjects (with the same Mturk qualifications) evaluated the 

guesses for the 360 texforms made from 180 original images. The original images were divided 

into 9 sets of 20 original images, and each subject viewed two sets of the original images (40 

original images in total, where 10 from each of the 4 types: big objects, small objects, big 

animals, and small animals), with each set of the images viewed by two subjects. They viewed 

the images one by one along with 18 guesses for the corresponding texforms from subjects in 

the recognition task. The subjects in the evaluation task were never shown any texforms. For 

each subject, one set of the images were paired with the 18 guesses came from the 18 subjects 

who viewed the left texforms, and the other set were paired with the 18 guesses came from the 

18 subjects who viewed the right texforms. Each set of the stimuli were evaluated by two 

subjects, with one subject evaluating the guesses for their left texforms, and the other subject 

evaluating the guess for their right texforms. The subjects were instructed to judge whether 

each guess could be “used to correctly describe” the original image. They were asked to 

consider guesses correct as long as the guesses were descriptions of something of similar real-

world sizes and shapes from the correct answers. The guesses were spell checked and corrected 

using Microsoft Word before being shown to the subjects. We left the few guesses that were 

incorrectly and ambiguously spelled as is, since none of the likely interpretations of these 

guesses could influence the results. The count of guesses that were graded as correct yielded a 

recognizability score (ranging from 0 to 18) for each texform. We selected a final set of 40 pairs 

of intact and texform images (20 big items and 20 small items, half depicting animals and half 

depicting inanimate objects), where the items received a recognizability score of no more than 3 

out of 18. The recognizability scores for the selected set can be found at 

http://dx.doi.org/10.17605/OSF.IO/PQVSR.  
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Appendix C: Individual Data Visualizations 

 

 

Fig. A1  Each subject’s data from Experiment 1 are depicted with two lines of the same color (for 

intact and texform conditions respectively), with the selected size averaged over items plotted 

on the y-axis and the experimental conditions plotted on the x-axis. 



 
 

Fig. A2  Each subject’s data from the choice task in Experiment 2a are depicted with two lines of 

the same color (for unrecognized and recognized items respectively), with percentage choosing 

canonical size plotted on the y-axis and the experimental conditions plotted on the x-axis. 



 

Fig. A3  Each subject’s data from the choice task in Experiment 2b are depicted with two lines of 

the same color (for unrecognized and recognized items respectively), with percentage choosing 

canonical size plotted on the y-axis and the experimental conditions plotted on the x-axis. 



 

Fig. A4  Each subject’s data from the choice task in Experiment 3 are depicted with a line, 

separately for aesthetic task and priming task conditions, with percentage choosing canonical 

size plotted on the y-axis and the recognition status plotted on the x-axis. 
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